Spectral properties of horocycle flows for compact surfaces of constant negative curvature

We consider flows, called Wu flows, whose orbits are the unstable manifolds of a codimension one Anosov flow. Under some regularity assumptions, we give a short proof of the strong mixing property of Wu flows and we show that Wu flows have purely absolutely continuous spectrum in the orthocomplement...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Tiedra de Aldecoa,Rafael
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000100006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172017000100006
record_format dspace
spelling oai:scielo:S0716-091720170001000062017-02-13Spectral properties of horocycle flows for compact surfaces of constant negative curvatureTiedra de Aldecoa,Rafael Horocycle flow Anosov flow strong mixing continuous spectrum commutator methods We consider flows, called Wu flows, whose orbits are the unstable manifolds of a codimension one Anosov flow. Under some regularity assumptions, we give a short proof of the strong mixing property of Wu flows and we show that Wu flows have purely absolutely continuous spectrum in the orthocomplement of the constant functions. As an application, we obtain that time changes of the classical horocycle flows for compact surfaces of constant negative curvature have purely absolutely continuous spectrum in the orthocomplement of the constant functions for time changes in a regularity class slightly less than C². This generalises recent results on time changes ofhorocycle flows.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.36 n.1 20172017-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000100006en10.4067/S0716-09172017000100006
institution Scielo Chile
collection Scielo Chile
language English
topic Horocycle flow
Anosov flow
strong mixing
continuous spectrum
commutator methods
spellingShingle Horocycle flow
Anosov flow
strong mixing
continuous spectrum
commutator methods
Tiedra de Aldecoa,Rafael
Spectral properties of horocycle flows for compact surfaces of constant negative curvature
description We consider flows, called Wu flows, whose orbits are the unstable manifolds of a codimension one Anosov flow. Under some regularity assumptions, we give a short proof of the strong mixing property of Wu flows and we show that Wu flows have purely absolutely continuous spectrum in the orthocomplement of the constant functions. As an application, we obtain that time changes of the classical horocycle flows for compact surfaces of constant negative curvature have purely absolutely continuous spectrum in the orthocomplement of the constant functions for time changes in a regularity class slightly less than C². This generalises recent results on time changes ofhorocycle flows.
author Tiedra de Aldecoa,Rafael
author_facet Tiedra de Aldecoa,Rafael
author_sort Tiedra de Aldecoa,Rafael
title Spectral properties of horocycle flows for compact surfaces of constant negative curvature
title_short Spectral properties of horocycle flows for compact surfaces of constant negative curvature
title_full Spectral properties of horocycle flows for compact surfaces of constant negative curvature
title_fullStr Spectral properties of horocycle flows for compact surfaces of constant negative curvature
title_full_unstemmed Spectral properties of horocycle flows for compact surfaces of constant negative curvature
title_sort spectral properties of horocycle flows for compact surfaces of constant negative curvature
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2017
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000100006
work_keys_str_mv AT tiedradealdecoarafael spectralpropertiesofhorocycleflowsforcompactsurfacesofconstantnegativecurvature
_version_ 1718439820838043648