The total detour monophonic number of a graph
Abstract: For a connected graph G = (V, E) of order at least two, a chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A longest x − y monophonic path is called an x − y detour monophonic path. A s...
Guardado en:
Autores principales: | Santhakumaran,A. P., Titus,P., Ganesamoorthy,K. |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2017
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000200209 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Upper Edge Detour Monophonic Number of a Graph
por: Titus,P, et al.
Publicado: (2014) -
Edge Detour Monophonic Number of a Graph
por: Santhakumaran,A. P., et al.
Publicado: (2013) -
Edge-to-vertex m-detour monophonic number of a graph
por: Santhakumaran,A. P., et al.
Publicado: (2018) -
Characterization of Upper Detour Monophonic Domination Number
por: Khayyoom,M. Mohammed Abdul
Publicado: (2020) -
The forcing total monophonic number of a graph
por: Santhakumaran,A. P., et al.
Publicado: (2021)