Edge fixed monophonic number of a graph

Abstract: For an edge xy in a connected graph G of order p ≥ 3, a set S V(G)is an xy-monophonic set of G if each vertex v Є V(G) lies on an x-u monophonic path or a y-u monophonic path for some element u in S. The minimum cardinality of an xy- monophonic set of G is defined as th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Titus,P., Vanaja,S. Eldin
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300363
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract: For an edge xy in a connected graph G of order p ≥ 3, a set S V(G)is an xy-monophonic set of G if each vertex v Є V(G) lies on an x-u monophonic path or a y-u monophonic path for some element u in S. The minimum cardinality of an xy- monophonic set of G is defined as the xy-monophonic number of G, denoted by mxy (G) . An xy-monophonic set of cardinality mxy (G) is called a mxy -set of G. We determine bounds for it and find the same for special classes of graphs. It is shown that for any three positive integers r, d and n ≥ 2 with 2 ≤ r ≤ d, there exists a connected graph G with monophonic radius r, monophonic diameter d and mxy (G) = n for some edge xy in G.