Edge fixed monophonic number of a graph

Abstract: For an edge xy in a connected graph G of order p ≥ 3, a set S V(G)is an xy-monophonic set of G if each vertex v Є V(G) lies on an x-u monophonic path or a y-u monophonic path for some element u in S. The minimum cardinality of an xy- monophonic set of G is defined as th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Titus,P., Vanaja,S. Eldin
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300363
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172017000300363
record_format dspace
spelling oai:scielo:S0716-091720170003003632017-10-31Edge fixed monophonic number of a graphTitus,P.Vanaja,S. Eldin Monophonic path vertex monophonic number edge fixed monophonic number Abstract: For an edge xy in a connected graph G of order p ≥ 3, a set S V(G)is an xy-monophonic set of G if each vertex v Є V(G) lies on an x-u monophonic path or a y-u monophonic path for some element u in S. The minimum cardinality of an xy- monophonic set of G is defined as the xy-monophonic number of G, denoted by mxy (G) . An xy-monophonic set of cardinality mxy (G) is called a mxy -set of G. We determine bounds for it and find the same for special classes of graphs. It is shown that for any three positive integers r, d and n ≥ 2 with 2 ≤ r ≤ d, there exists a connected graph G with monophonic radius r, monophonic diameter d and mxy (G) = n for some edge xy in G.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.36 n.3 20172017-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300363en10.4067/S0716-09172017000300363
institution Scielo Chile
collection Scielo Chile
language English
topic Monophonic path
vertex monophonic number
edge fixed monophonic number
spellingShingle Monophonic path
vertex monophonic number
edge fixed monophonic number
Titus,P.
Vanaja,S. Eldin
Edge fixed monophonic number of a graph
description Abstract: For an edge xy in a connected graph G of order p ≥ 3, a set S V(G)is an xy-monophonic set of G if each vertex v Є V(G) lies on an x-u monophonic path or a y-u monophonic path for some element u in S. The minimum cardinality of an xy- monophonic set of G is defined as the xy-monophonic number of G, denoted by mxy (G) . An xy-monophonic set of cardinality mxy (G) is called a mxy -set of G. We determine bounds for it and find the same for special classes of graphs. It is shown that for any three positive integers r, d and n ≥ 2 with 2 ≤ r ≤ d, there exists a connected graph G with monophonic radius r, monophonic diameter d and mxy (G) = n for some edge xy in G.
author Titus,P.
Vanaja,S. Eldin
author_facet Titus,P.
Vanaja,S. Eldin
author_sort Titus,P.
title Edge fixed monophonic number of a graph
title_short Edge fixed monophonic number of a graph
title_full Edge fixed monophonic number of a graph
title_fullStr Edge fixed monophonic number of a graph
title_full_unstemmed Edge fixed monophonic number of a graph
title_sort edge fixed monophonic number of a graph
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2017
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300363
work_keys_str_mv AT titusp edgefixedmonophonicnumberofagraph
AT vanajaseldin edgefixedmonophonicnumberofagraph
_version_ 1718439824241721344