Edge fixed monophonic number of a graph
Abstract: For an edge xy in a connected graph G of order p ≥ 3, a set S V(G)is an xy-monophonic set of G if each vertex v Є V(G) lies on an x-u monophonic path or a y-u monophonic path for some element u in S. The minimum cardinality of an xy- monophonic set of G is defined as th...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2017
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300363 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172017000300363 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720170003003632017-10-31Edge fixed monophonic number of a graphTitus,P.Vanaja,S. Eldin Monophonic path vertex monophonic number edge fixed monophonic number Abstract: For an edge xy in a connected graph G of order p ≥ 3, a set S V(G)is an xy-monophonic set of G if each vertex v Є V(G) lies on an x-u monophonic path or a y-u monophonic path for some element u in S. The minimum cardinality of an xy- monophonic set of G is defined as the xy-monophonic number of G, denoted by mxy (G) . An xy-monophonic set of cardinality mxy (G) is called a mxy -set of G. We determine bounds for it and find the same for special classes of graphs. It is shown that for any three positive integers r, d and n ≥ 2 with 2 ≤ r ≤ d, there exists a connected graph G with monophonic radius r, monophonic diameter d and mxy (G) = n for some edge xy in G.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.36 n.3 20172017-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300363en10.4067/S0716-09172017000300363 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Monophonic path vertex monophonic number edge fixed monophonic number |
spellingShingle |
Monophonic path vertex monophonic number edge fixed monophonic number Titus,P. Vanaja,S. Eldin Edge fixed monophonic number of a graph |
description |
Abstract: For an edge xy in a connected graph G of order p ≥ 3, a set S V(G)is an xy-monophonic set of G if each vertex v Є V(G) lies on an x-u monophonic path or a y-u monophonic path for some element u in S. The minimum cardinality of an xy- monophonic set of G is defined as the xy-monophonic number of G, denoted by mxy (G) . An xy-monophonic set of cardinality mxy (G) is called a mxy -set of G. We determine bounds for it and find the same for special classes of graphs. It is shown that for any three positive integers r, d and n ≥ 2 with 2 ≤ r ≤ d, there exists a connected graph G with monophonic radius r, monophonic diameter d and mxy (G) = n for some edge xy in G. |
author |
Titus,P. Vanaja,S. Eldin |
author_facet |
Titus,P. Vanaja,S. Eldin |
author_sort |
Titus,P. |
title |
Edge fixed monophonic number of a graph |
title_short |
Edge fixed monophonic number of a graph |
title_full |
Edge fixed monophonic number of a graph |
title_fullStr |
Edge fixed monophonic number of a graph |
title_full_unstemmed |
Edge fixed monophonic number of a graph |
title_sort |
edge fixed monophonic number of a graph |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2017 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300363 |
work_keys_str_mv |
AT titusp edgefixedmonophonicnumberofagraph AT vanajaseldin edgefixedmonophonicnumberofagraph |
_version_ |
1718439824241721344 |