The circle pattern uniformization problem
Abstract The existence of an explicit and canonical cell decomposition of the moduli space of closed Riemann surfaces of genus two shows that each Riemann surface of genus two can be parametrised by a 12-tuple of real numbers which corresponds to the angle coordinates of a graph associated to the su...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2017
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300397 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The existence of an explicit and canonical cell decomposition of the moduli space of closed Riemann surfaces of genus two shows that each Riemann surface of genus two can be parametrised by a 12-tuple of real numbers which corresponds to the angle coordinates of a graph associated to the surface. This suggests a Circle Pattern Uniformization Problem that we have defined and solved for three classical Riemann surfaces of genus two. Although in general, finding the exact algebraic equations corresponding to a hyperbolic surface from angle coordinates is a hard problem, we prove that known numerical methods can be applied to find approximated equations of Riemann surfaces of genus two from their angle coordinates and graph data for a large family of Riemann surfaces of genus two. |
---|