The circle pattern uniformization problem

Abstract The existence of an explicit and canonical cell decomposition of the moduli space of closed Riemann surfaces of genus two shows that each Riemann surface of genus two can be parametrised by a 12-tuple of real numbers which corresponds to the angle coordinates of a graph associated to the su...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Amaris,Armando Rodado, Lusares,Gina
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300397
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172017000300397
record_format dspace
spelling oai:scielo:S0716-091720170003003972017-10-31The circle pattern uniformization problemAmaris,Armando RodadoLusares,Gina Uniformization Problem Riemann Surfaces of Genus Two Circle pattern Uniformization Problem Abstract The existence of an explicit and canonical cell decomposition of the moduli space of closed Riemann surfaces of genus two shows that each Riemann surface of genus two can be parametrised by a 12-tuple of real numbers which corresponds to the angle coordinates of a graph associated to the surface. This suggests a Circle Pattern Uniformization Problem that we have defined and solved for three classical Riemann surfaces of genus two. Although in general, finding the exact algebraic equations corresponding to a hyperbolic surface from angle coordinates is a hard problem, we prove that known numerical methods can be applied to find approximated equations of Riemann surfaces of genus two from their angle coordinates and graph data for a large family of Riemann surfaces of genus two.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.36 n.3 20172017-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300397en10.4067/S0716-09172017000300397
institution Scielo Chile
collection Scielo Chile
language English
topic Uniformization Problem
Riemann Surfaces of Genus Two
Circle pattern Uniformization Problem
spellingShingle Uniformization Problem
Riemann Surfaces of Genus Two
Circle pattern Uniformization Problem
Amaris,Armando Rodado
Lusares,Gina
The circle pattern uniformization problem
description Abstract The existence of an explicit and canonical cell decomposition of the moduli space of closed Riemann surfaces of genus two shows that each Riemann surface of genus two can be parametrised by a 12-tuple of real numbers which corresponds to the angle coordinates of a graph associated to the surface. This suggests a Circle Pattern Uniformization Problem that we have defined and solved for three classical Riemann surfaces of genus two. Although in general, finding the exact algebraic equations corresponding to a hyperbolic surface from angle coordinates is a hard problem, we prove that known numerical methods can be applied to find approximated equations of Riemann surfaces of genus two from their angle coordinates and graph data for a large family of Riemann surfaces of genus two.
author Amaris,Armando Rodado
Lusares,Gina
author_facet Amaris,Armando Rodado
Lusares,Gina
author_sort Amaris,Armando Rodado
title The circle pattern uniformization problem
title_short The circle pattern uniformization problem
title_full The circle pattern uniformization problem
title_fullStr The circle pattern uniformization problem
title_full_unstemmed The circle pattern uniformization problem
title_sort circle pattern uniformization problem
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2017
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300397
work_keys_str_mv AT amarisarmandorodado thecirclepatternuniformizationproblem
AT lusaresgina thecirclepatternuniformizationproblem
AT amarisarmandorodado circlepatternuniformizationproblem
AT lusaresgina circlepatternuniformizationproblem
_version_ 1718439824693657600