Positive periodic solutions for neutral functional differential systems
Abstract: We study the existence of positive periodic solutions of a system of neutral differential equations. In the process we construct two mappings in which one is a contraction and the other compact. A Krasnoselskii's fixed point theorem is then used in the analysis.
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2017
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300423 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172017000300423 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720170003004232017-10-31Positive periodic solutions for neutral functional differential systemsYankson,ErnestAssabil,Samuel E. Krasnoselskii Neutral Functional differential System Positive periodic solutions. Abstract: We study the existence of positive periodic solutions of a system of neutral differential equations. In the process we construct two mappings in which one is a contraction and the other compact. A Krasnoselskii's fixed point theorem is then used in the analysis.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.36 n.3 20172017-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300423en10.4067/S0716-09172017000300423 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Krasnoselskii Neutral Functional differential System Positive periodic solutions. |
spellingShingle |
Krasnoselskii Neutral Functional differential System Positive periodic solutions. Yankson,Ernest Assabil,Samuel E. Positive periodic solutions for neutral functional differential systems |
description |
Abstract: We study the existence of positive periodic solutions of a system of neutral differential equations. In the process we construct two mappings in which one is a contraction and the other compact. A Krasnoselskii's fixed point theorem is then used in the analysis. |
author |
Yankson,Ernest Assabil,Samuel E. |
author_facet |
Yankson,Ernest Assabil,Samuel E. |
author_sort |
Yankson,Ernest |
title |
Positive periodic solutions for neutral functional differential systems |
title_short |
Positive periodic solutions for neutral functional differential systems |
title_full |
Positive periodic solutions for neutral functional differential systems |
title_fullStr |
Positive periodic solutions for neutral functional differential systems |
title_full_unstemmed |
Positive periodic solutions for neutral functional differential systems |
title_sort |
positive periodic solutions for neutral functional differential systems |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2017 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300423 |
work_keys_str_mv |
AT yanksonernest positiveperiodicsolutionsforneutralfunctionaldifferentialsystems AT assabilsamuele positiveperiodicsolutionsforneutralfunctionaldifferentialsystems |
_version_ |
1718439825074290688 |