Error analysis of a least squares pseudo-derivative moving least squares method

Abstract Meshfree methods offer the potential to relieve the scientist from the time consuming grid generation process especially in cases where localized mesh refinement is desired. Moving least squares (MLS) methods are considered such a meshfree technique. The pseudo-derivative (PD) approach has...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Clack,Jhules, French,Donald A., Osorio,Mauricio
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300435
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172017000300435
record_format dspace
spelling oai:scielo:S0716-091720170003004352017-10-31Error analysis of a least squares pseudo-derivative moving least squares methodClack,JhulesFrench,Donald A.Osorio,Mauricio Pseudo-derivatives moving least square methods and error estimates. Abstract Meshfree methods offer the potential to relieve the scientist from the time consuming grid generation process especially in cases where localized mesh refinement is desired. Moving least squares (MLS) methods are considered such a meshfree technique. The pseudo-derivative (PD) approach has been used in many papers to simplify the manipulations involved in MLS schemes. In this paper, we provide theoretical error estimates for a least squares implementation of an MLS/PD method with a stabilization mechanism. Some beginning computations suggest this stabilization leads to good matrix conditioning.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.36 n.3 20172017-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300435en10.4067/S0716-09172017000300435
institution Scielo Chile
collection Scielo Chile
language English
topic Pseudo-derivatives
moving least square methods and error estimates.
spellingShingle Pseudo-derivatives
moving least square methods and error estimates.
Clack,Jhules
French,Donald A.
Osorio,Mauricio
Error analysis of a least squares pseudo-derivative moving least squares method
description Abstract Meshfree methods offer the potential to relieve the scientist from the time consuming grid generation process especially in cases where localized mesh refinement is desired. Moving least squares (MLS) methods are considered such a meshfree technique. The pseudo-derivative (PD) approach has been used in many papers to simplify the manipulations involved in MLS schemes. In this paper, we provide theoretical error estimates for a least squares implementation of an MLS/PD method with a stabilization mechanism. Some beginning computations suggest this stabilization leads to good matrix conditioning.
author Clack,Jhules
French,Donald A.
Osorio,Mauricio
author_facet Clack,Jhules
French,Donald A.
Osorio,Mauricio
author_sort Clack,Jhules
title Error analysis of a least squares pseudo-derivative moving least squares method
title_short Error analysis of a least squares pseudo-derivative moving least squares method
title_full Error analysis of a least squares pseudo-derivative moving least squares method
title_fullStr Error analysis of a least squares pseudo-derivative moving least squares method
title_full_unstemmed Error analysis of a least squares pseudo-derivative moving least squares method
title_sort error analysis of a least squares pseudo-derivative moving least squares method
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2017
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000300435
work_keys_str_mv AT clackjhules erroranalysisofaleastsquarespseudoderivativemovingleastsquaresmethod
AT frenchdonalda erroranalysisofaleastsquarespseudoderivativemovingleastsquaresmethod
AT osoriomauricio erroranalysisofaleastsquarespseudoderivativemovingleastsquaresmethod
_version_ 1718439825317560320