Some results on SD-Prime cordial labeling
Abstract: Given a bijection ʄ: V(G) → {1,2, …,|V(G)|}, we associate 2 integers S = ʄ(u)+ʄ(v) and D = |ʄ(u)-ʄ(v)| with every edge uv in E(G). The labeling ʄ induces an edge labeling ʄ' : E(G) → {0,1} suc...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2017
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000400601 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172017000400601 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720170004006012018-01-08Some results on SD-Prime cordial labelingLourdusamy,A.Patrick,F. SD-prime labeling SD-prime cordial labeling star. Abstract: Given a bijection ʄ: V(G) → {1,2, …,|V(G)|}, we associate 2 integers S = ʄ(u)+ʄ(v) and D = |ʄ(u)-ʄ(v)| with every edge uv in E(G). The labeling ʄ induces an edge labeling ʄ' : E(G) → {0,1} such that for any edge uv in E(G), ʄ '(uv)=1 if gcd(S,D)=1, and ʄ ' (uv)=0 otherwise. Let eʄ ' (i) be the number of edges labeled with i ∈ {0,1}. We say ʄ is SD-prime cordial labeling if | eʄ ' (0)- e ʄ' (1)| ≤ 1. Moreover G is SD-prime cordial if it admits SD-prime cordial labeling. In this paper, we investigate the SD-prime cordial labeling of some derived graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.36 n.4 20172017-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000400601en10.4067/S0716-09172017000400601 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
SD-prime labeling SD-prime cordial labeling star. |
spellingShingle |
SD-prime labeling SD-prime cordial labeling star. Lourdusamy,A. Patrick,F. Some results on SD-Prime cordial labeling |
description |
Abstract: Given a bijection ʄ: V(G) → {1,2, …,|V(G)|}, we associate 2 integers S = ʄ(u)+ʄ(v) and D = |ʄ(u)-ʄ(v)| with every edge uv in E(G). The labeling ʄ induces an edge labeling ʄ' : E(G) → {0,1} such that for any edge uv in E(G), ʄ '(uv)=1 if gcd(S,D)=1, and ʄ ' (uv)=0 otherwise. Let eʄ ' (i) be the number of edges labeled with i ∈ {0,1}. We say ʄ is SD-prime cordial labeling if | eʄ ' (0)- e ʄ' (1)| ≤ 1. Moreover G is SD-prime cordial if it admits SD-prime cordial labeling. In this paper, we investigate the SD-prime cordial labeling of some derived graphs. |
author |
Lourdusamy,A. Patrick,F. |
author_facet |
Lourdusamy,A. Patrick,F. |
author_sort |
Lourdusamy,A. |
title |
Some results on SD-Prime cordial labeling |
title_short |
Some results on SD-Prime cordial labeling |
title_full |
Some results on SD-Prime cordial labeling |
title_fullStr |
Some results on SD-Prime cordial labeling |
title_full_unstemmed |
Some results on SD-Prime cordial labeling |
title_sort |
some results on sd-prime cordial labeling |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2017 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000400601 |
work_keys_str_mv |
AT lourdusamya someresultsonsdprimecordiallabeling AT patrickf someresultsonsdprimecordiallabeling |
_version_ |
1718439828081606656 |