Some results on SD-Prime cordial labeling

Abstract: Given a bijection ʄ: V(G) → {1,2, …,|V(G)|}, we associate 2 integers S = ʄ(u)+ʄ(v) and D = |ʄ(u)-ʄ(v)| with every edge uv in E(G). The labeling ʄ induces an edge labeling ʄ' : E(G) → {0,1} suc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lourdusamy,A., Patrick,F.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000400601
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172017000400601
record_format dspace
spelling oai:scielo:S0716-091720170004006012018-01-08Some results on SD-Prime cordial labelingLourdusamy,A.Patrick,F. SD-prime labeling SD-prime cordial labeling star. Abstract: Given a bijection ʄ: V(G) → {1,2, …,|V(G)|}, we associate 2 integers S = ʄ(u)+ʄ(v) and D = |ʄ(u)-ʄ(v)| with every edge uv in E(G). The labeling ʄ induces an edge labeling ʄ' : E(G) → {0,1} such that for any edge uv in E(G), ʄ '(uv)=1 if gcd(S,D)=1, and ʄ ' (uv)=0 otherwise. Let eʄ ' (i) be the number of edges labeled with i ∈ {0,1}. We say ʄ is SD-prime cordial labeling if | eʄ ' (0)- e ʄ' (1)| ≤ 1. Moreover G is SD-prime cordial if it admits SD-prime cordial labeling. In this paper, we investigate the SD-prime cordial labeling of some derived graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.36 n.4 20172017-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000400601en10.4067/S0716-09172017000400601
institution Scielo Chile
collection Scielo Chile
language English
topic SD-prime labeling
SD-prime cordial labeling
star.
spellingShingle SD-prime labeling
SD-prime cordial labeling
star.
Lourdusamy,A.
Patrick,F.
Some results on SD-Prime cordial labeling
description Abstract: Given a bijection ʄ: V(G) → {1,2, …,|V(G)|}, we associate 2 integers S = ʄ(u)+ʄ(v) and D = |ʄ(u)-ʄ(v)| with every edge uv in E(G). The labeling ʄ induces an edge labeling ʄ' : E(G) → {0,1} such that for any edge uv in E(G), ʄ '(uv)=1 if gcd(S,D)=1, and ʄ ' (uv)=0 otherwise. Let eʄ ' (i) be the number of edges labeled with i ∈ {0,1}. We say ʄ is SD-prime cordial labeling if | eʄ ' (0)- e ʄ' (1)| ≤ 1. Moreover G is SD-prime cordial if it admits SD-prime cordial labeling. In this paper, we investigate the SD-prime cordial labeling of some derived graphs.
author Lourdusamy,A.
Patrick,F.
author_facet Lourdusamy,A.
Patrick,F.
author_sort Lourdusamy,A.
title Some results on SD-Prime cordial labeling
title_short Some results on SD-Prime cordial labeling
title_full Some results on SD-Prime cordial labeling
title_fullStr Some results on SD-Prime cordial labeling
title_full_unstemmed Some results on SD-Prime cordial labeling
title_sort some results on sd-prime cordial labeling
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2017
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000400601
work_keys_str_mv AT lourdusamya someresultsonsdprimecordiallabeling
AT patrickf someresultsonsdprimecordiallabeling
_version_ 1718439828081606656