New results on exponential stability of nonlinear Volterra integro-differential equations with constant time-lag
Abstract: In the present work, we pay attention to a number of nonlinear Volterra integro-differential equations (VIDEs) with constant time-lag. We define three new Lyapunov functionals (LFs) and employ them to get specific conditions guaranteeing the uniform exponential asymptotic stability (UEAS)...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2017
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000400615 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172017000400615 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720170004006152018-01-08New results on exponential stability of nonlinear Volterra integro-differential equations with constant time-lagTunç,CemilMohammed,Sizar Abid Non-linear (VIDE) first order delay (UEAS);(LF) Abstract: In the present work, we pay attention to a number of nonlinear Volterra integro-differential equations (VIDEs) with constant time-lag. We define three new Lyapunov functionals (LFs) and employ them to get specific conditions guaranteeing the uniform exponential asymptotic stability (UEAS) of the trivial solutions of the (VIDEs) considered. The results obtained generalize, compliment and improve the existing results in the literature from the cases of the without delay to the more general cases with time-lag.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.36 n.4 20172017-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000400615en10.4067/S0716-09172017000400615 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Non-linear (VIDE) first order delay (UEAS);(LF) |
spellingShingle |
Non-linear (VIDE) first order delay (UEAS);(LF) Tunç,Cemil Mohammed,Sizar Abid New results on exponential stability of nonlinear Volterra integro-differential equations with constant time-lag |
description |
Abstract: In the present work, we pay attention to a number of nonlinear Volterra integro-differential equations (VIDEs) with constant time-lag. We define three new Lyapunov functionals (LFs) and employ them to get specific conditions guaranteeing the uniform exponential asymptotic stability (UEAS) of the trivial solutions of the (VIDEs) considered. The results obtained generalize, compliment and improve the existing results in the literature from the cases of the without delay to the more general cases with time-lag. |
author |
Tunç,Cemil Mohammed,Sizar Abid |
author_facet |
Tunç,Cemil Mohammed,Sizar Abid |
author_sort |
Tunç,Cemil |
title |
New results on exponential stability of nonlinear Volterra integro-differential equations with constant time-lag |
title_short |
New results on exponential stability of nonlinear Volterra integro-differential equations with constant time-lag |
title_full |
New results on exponential stability of nonlinear Volterra integro-differential equations with constant time-lag |
title_fullStr |
New results on exponential stability of nonlinear Volterra integro-differential equations with constant time-lag |
title_full_unstemmed |
New results on exponential stability of nonlinear Volterra integro-differential equations with constant time-lag |
title_sort |
new results on exponential stability of nonlinear volterra integro-differential equations with constant time-lag |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2017 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000400615 |
work_keys_str_mv |
AT tunccemil newresultsonexponentialstabilityofnonlinearvolterraintegrodifferentialequationswithconstanttimelag AT mohammedsizarabid newresultsonexponentialstabilityofnonlinearvolterraintegrodifferentialequationswithconstanttimelag |
_version_ |
1718439828427636736 |