Hermite-Hadamard type fractional integral inequalities for generalized beta ( r , g )-preinvex functions

Abstract In the present paper, a new class of generalized beta (r, g)-preinvex functions is introduced and some new integral inequalities for the left-hand side of Gauss-Jacobi type quadrature formula involving generalized beta (r, g)-preinvex functions are given. Moreover, some generalizations of H...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kashuri,Artion, Liko,Rozana
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000400711
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract In the present paper, a new class of generalized beta (r, g)-preinvex functions is introduced and some new integral inequalities for the left-hand side of Gauss-Jacobi type quadrature formula involving generalized beta (r, g)-preinvex functions are given. Moreover, some generalizations of Hermite-Hadamard type inequalities for generalized beta (r, g)-preinvex functions via Riemann-Liouville fractional integrals are established. These results not only extend the results appeared in the literature (see (1), (2)), but also provide new estimates on these types.