Hermite-Hadamard type fractional integral inequalities for generalized beta ( r , g )-preinvex functions
Abstract In the present paper, a new class of generalized beta (r, g)-preinvex functions is introduced and some new integral inequalities for the left-hand side of Gauss-Jacobi type quadrature formula involving generalized beta (r, g)-preinvex functions are given. Moreover, some generalizations of H...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2017
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000400711 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract In the present paper, a new class of generalized beta (r, g)-preinvex functions is introduced and some new integral inequalities for the left-hand side of Gauss-Jacobi type quadrature formula involving generalized beta (r, g)-preinvex functions are given. Moreover, some generalizations of Hermite-Hadamard type inequalities for generalized beta (r, g)-preinvex functions via Riemann-Liouville fractional integrals are established. These results not only extend the results appeared in the literature (see (1), (2)), but also provide new estimates on these types. |
---|