Ostrowski type fractional integral inequalities for s -Godunova-Levin functions via k -fractional integrals
Abstract: In this paper, we give some fractional integral inequalities of Ostrowski type for s-Godunova-Levin functions via Riemann-Liouville k- fractional integrals. We deduce some known Ostrowski type fractional integral inequalities for Riemann-Liouville fractional integrals and we also prove res...
Enregistré dans:
| Auteurs principaux: | , , |
|---|---|
| Langue: | English |
| Publié: |
Universidad Católica del Norte, Departamento de Matemáticas
2017
|
| Sujets: | |
| Accès en ligne: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000400753 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
| id |
oai:scielo:S0716-09172017000400753 |
|---|---|
| record_format |
dspace |
| spelling |
oai:scielo:S0716-091720170004007532018-01-08Ostrowski type fractional integral inequalities for s -Godunova-Levin functions via k -fractional integralsFarid,GhulamRehman,Atiq UrUsman,Muhammad Ostrowski inequality Riemann-Liouville fractional integrals s-Godunova-Levin functions Abstract: In this paper, we give some fractional integral inequalities of Ostrowski type for s-Godunova-Levin functions via Riemann-Liouville k- fractional integrals. We deduce some known Ostrowski type fractional integral inequalities for Riemann-Liouville fractional integrals and we also prove results for p-functions and Godunova-Levin functions by taking s=0 ans s=1 respectively.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.36 n.4 20172017-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000400753en10.4067/S0716-09172017000400753 |
| institution |
Scielo Chile |
| collection |
Scielo Chile |
| language |
English |
| topic |
Ostrowski inequality Riemann-Liouville fractional integrals s-Godunova-Levin functions |
| spellingShingle |
Ostrowski inequality Riemann-Liouville fractional integrals s-Godunova-Levin functions Farid,Ghulam Rehman,Atiq Ur Usman,Muhammad Ostrowski type fractional integral inequalities for s -Godunova-Levin functions via k -fractional integrals |
| description |
Abstract: In this paper, we give some fractional integral inequalities of Ostrowski type for s-Godunova-Levin functions via Riemann-Liouville k- fractional integrals. We deduce some known Ostrowski type fractional integral inequalities for Riemann-Liouville fractional integrals and we also prove results for p-functions and Godunova-Levin functions by taking s=0 ans s=1 respectively. |
| author |
Farid,Ghulam Rehman,Atiq Ur Usman,Muhammad |
| author_facet |
Farid,Ghulam Rehman,Atiq Ur Usman,Muhammad |
| author_sort |
Farid,Ghulam |
| title |
Ostrowski type fractional integral inequalities for s -Godunova-Levin functions via k -fractional integrals |
| title_short |
Ostrowski type fractional integral inequalities for s -Godunova-Levin functions via k -fractional integrals |
| title_full |
Ostrowski type fractional integral inequalities for s -Godunova-Levin functions via k -fractional integrals |
| title_fullStr |
Ostrowski type fractional integral inequalities for s -Godunova-Levin functions via k -fractional integrals |
| title_full_unstemmed |
Ostrowski type fractional integral inequalities for s -Godunova-Levin functions via k -fractional integrals |
| title_sort |
ostrowski type fractional integral inequalities for s -godunova-levin functions via k -fractional integrals |
| publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
| publishDate |
2017 |
| url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172017000400753 |
| work_keys_str_mv |
AT faridghulam ostrowskitypefractionalintegralinequalitiesforsgodunovalevinfunctionsviakfractionalintegrals AT rehmanatiqur ostrowskitypefractionalintegralinequalitiesforsgodunovalevinfunctionsviakfractionalintegrals AT usmanmuhammad ostrowskitypefractionalintegralinequalitiesforsgodunovalevinfunctionsviakfractionalintegrals |
| _version_ |
1718439830518497280 |