Generalized Drazin-type spectra of Operator matrices
Abstract: In this paper, we investigate the limit points set of surjective and approximate point spectra of upper triangular operator matrices . We prove that σ*(MC) ∪ W=σ*(𝐴)∪σ*(𝐵) where W is the union of certain holes in &...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000100119 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract: In this paper, we investigate the limit points set of surjective and approximate point spectra of upper triangular operator matrices . We prove that σ*(MC) ∪ W=σ*(𝐴)∪σ*(𝐵) where W is the union of certain holes in σ*(MC), which happen to be subsets of σlgD(𝐵) ∩ σrgD(𝐴), σ* ∈ {σlgD, σrgD} are the limit points set of surjective and approximate point spectra. Furthermore, several sufficient conditions for σ* (MC) = σ* (𝐴)∪σ* (𝐵) holds for every C ∈ ℬ(Y,X) are given. |
---|