Jordan triple derivation on alternative rings
Abstract: Let D be a mapping from an alternative ring R into itself satisfying D(a · ba) = D(a) · ba+ a · D(b)a +a · bD(a) for all a, b ∈ R. Under some conditions on R, we show that D is additive.
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000100171 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172018000100171 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720180001001712018-03-13Jordan triple derivation on alternative ringsFerreira,Ruth N.Ferreira,Bruno L. M. Alternative ring Idempotent element Maps Additivity Abstract: Let D be a mapping from an alternative ring R into itself satisfying D(a · ba) = D(a) · ba+ a · D(b)a +a · bD(a) for all a, b ∈ R. Under some conditions on R, we show that D is additive.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.37 n.1 20182018-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000100171en10.4067/S0716-09172018000100171 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Alternative ring Idempotent element Maps Additivity |
spellingShingle |
Alternative ring Idempotent element Maps Additivity Ferreira,Ruth N. Ferreira,Bruno L. M. Jordan triple derivation on alternative rings |
description |
Abstract: Let D be a mapping from an alternative ring R into itself satisfying D(a · ba) = D(a) · ba+ a · D(b)a +a · bD(a) for all a, b ∈ R. Under some conditions on R, we show that D is additive. |
author |
Ferreira,Ruth N. Ferreira,Bruno L. M. |
author_facet |
Ferreira,Ruth N. Ferreira,Bruno L. M. |
author_sort |
Ferreira,Ruth N. |
title |
Jordan triple derivation on alternative rings |
title_short |
Jordan triple derivation on alternative rings |
title_full |
Jordan triple derivation on alternative rings |
title_fullStr |
Jordan triple derivation on alternative rings |
title_full_unstemmed |
Jordan triple derivation on alternative rings |
title_sort |
jordan triple derivation on alternative rings |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2018 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000100171 |
work_keys_str_mv |
AT ferreiraruthn jordantriplederivationonalternativerings AT ferreirabrunolm jordantriplederivationonalternativerings |
_version_ |
1718439832999428096 |