Jordan triple derivation on alternative rings

Abstract: Let D be a mapping from an alternative ring R into itself satisfying D(a · ba) = D(a) · ba+ a · D(b)a +a · bD(a) for all a, b ∈ R. Under some conditions on R, we show that D is additive.

Guardado en:
Detalles Bibliográficos
Autores principales: Ferreira,Ruth N., Ferreira,Bruno L. M.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000100171
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172018000100171
record_format dspace
spelling oai:scielo:S0716-091720180001001712018-03-13Jordan triple derivation on alternative ringsFerreira,Ruth N.Ferreira,Bruno L. M. Alternative ring Idempotent element Maps Additivity Abstract: Let D be a mapping from an alternative ring R into itself satisfying D(a · ba) = D(a) · ba+ a · D(b)a +a · bD(a) for all a, b ∈ R. Under some conditions on R, we show that D is additive.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.37 n.1 20182018-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000100171en10.4067/S0716-09172018000100171
institution Scielo Chile
collection Scielo Chile
language English
topic Alternative ring
Idempotent element
Maps
Additivity
spellingShingle Alternative ring
Idempotent element
Maps
Additivity
Ferreira,Ruth N.
Ferreira,Bruno L. M.
Jordan triple derivation on alternative rings
description Abstract: Let D be a mapping from an alternative ring R into itself satisfying D(a · ba) = D(a) · ba+ a · D(b)a +a · bD(a) for all a, b ∈ R. Under some conditions on R, we show that D is additive.
author Ferreira,Ruth N.
Ferreira,Bruno L. M.
author_facet Ferreira,Ruth N.
Ferreira,Bruno L. M.
author_sort Ferreira,Ruth N.
title Jordan triple derivation on alternative rings
title_short Jordan triple derivation on alternative rings
title_full Jordan triple derivation on alternative rings
title_fullStr Jordan triple derivation on alternative rings
title_full_unstemmed Jordan triple derivation on alternative rings
title_sort jordan triple derivation on alternative rings
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2018
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000100171
work_keys_str_mv AT ferreiraruthn jordantriplederivationonalternativerings
AT ferreirabrunolm jordantriplederivationonalternativerings
_version_ 1718439832999428096