A general method for to decompose modular multiplicative inverse operators over Group of units

Abstract: In this article, the notion of modular multiplicative inverse operator (MMIO): where ϱ=b × d >3 with b, d ∈ N, is introduced and studied. A general method to decompose (MMIO) over group of units of the form (Z/ϱZ)* is also discussed through a new algorit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cortés Vega,Luis A.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200265
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172018000200265
record_format dspace
spelling oai:scielo:S0716-091720180002002652018-05-29A general method for to decompose modular multiplicative inverse operators over Group of unitsCortés Vega,Luis A. Descomposition laws group of units Bezout's theorem modular multiplicative inverse operator algorithmic functional technique Chinese remainder theorem. Abstract: In this article, the notion of modular multiplicative inverse operator (MMIO): where ϱ=b × d >3 with b, d ∈ N, is introduced and studied. A general method to decompose (MMIO) over group of units of the form (Z/ϱZ)* is also discussed through a new algorithmic functional version of Bezout's theorem. As a result, interesting decomposition laws for (MMIO)'s over (Z/ϱZ)* are obtained. Several numerical examples confirming the theoretical results are also reported.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.37 n.2 20182018-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200265en10.4067/S0716-09172018000200265
institution Scielo Chile
collection Scielo Chile
language English
topic Descomposition laws
group of units
Bezout's theorem
modular multiplicative inverse operator
algorithmic functional technique
Chinese remainder theorem.
spellingShingle Descomposition laws
group of units
Bezout's theorem
modular multiplicative inverse operator
algorithmic functional technique
Chinese remainder theorem.
Cortés Vega,Luis A.
A general method for to decompose modular multiplicative inverse operators over Group of units
description Abstract: In this article, the notion of modular multiplicative inverse operator (MMIO): where ϱ=b × d >3 with b, d ∈ N, is introduced and studied. A general method to decompose (MMIO) over group of units of the form (Z/ϱZ)* is also discussed through a new algorithmic functional version of Bezout's theorem. As a result, interesting decomposition laws for (MMIO)'s over (Z/ϱZ)* are obtained. Several numerical examples confirming the theoretical results are also reported.
author Cortés Vega,Luis A.
author_facet Cortés Vega,Luis A.
author_sort Cortés Vega,Luis A.
title A general method for to decompose modular multiplicative inverse operators over Group of units
title_short A general method for to decompose modular multiplicative inverse operators over Group of units
title_full A general method for to decompose modular multiplicative inverse operators over Group of units
title_fullStr A general method for to decompose modular multiplicative inverse operators over Group of units
title_full_unstemmed A general method for to decompose modular multiplicative inverse operators over Group of units
title_sort general method for to decompose modular multiplicative inverse operators over group of units
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2018
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200265
work_keys_str_mv AT cortesvegaluisa ageneralmethodfortodecomposemodularmultiplicativeinverseoperatorsovergroupofunits
AT cortesvegaluisa generalmethodfortodecomposemodularmultiplicativeinverseoperatorsovergroupofunits
_version_ 1718439834286030848