A general method for to decompose modular multiplicative inverse operators over Group of units
Abstract: In this article, the notion of modular multiplicative inverse operator (MMIO): where ϱ=b × d >3 with b, d ∈ N, is introduced and studied. A general method to decompose (MMIO) over group of units of the form (Z/ϱZ)* is also discussed through a new algorit...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200265 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172018000200265 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720180002002652018-05-29A general method for to decompose modular multiplicative inverse operators over Group of unitsCortés Vega,Luis A. Descomposition laws group of units Bezout's theorem modular multiplicative inverse operator algorithmic functional technique Chinese remainder theorem. Abstract: In this article, the notion of modular multiplicative inverse operator (MMIO): where ϱ=b × d >3 with b, d ∈ N, is introduced and studied. A general method to decompose (MMIO) over group of units of the form (Z/ϱZ)* is also discussed through a new algorithmic functional version of Bezout's theorem. As a result, interesting decomposition laws for (MMIO)'s over (Z/ϱZ)* are obtained. Several numerical examples confirming the theoretical results are also reported.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.37 n.2 20182018-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200265en10.4067/S0716-09172018000200265 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Descomposition laws group of units Bezout's theorem modular multiplicative inverse operator algorithmic functional technique Chinese remainder theorem. |
spellingShingle |
Descomposition laws group of units Bezout's theorem modular multiplicative inverse operator algorithmic functional technique Chinese remainder theorem. Cortés Vega,Luis A. A general method for to decompose modular multiplicative inverse operators over Group of units |
description |
Abstract: In this article, the notion of modular multiplicative inverse operator (MMIO): where ϱ=b × d >3 with b, d ∈ N, is introduced and studied. A general method to decompose (MMIO) over group of units of the form (Z/ϱZ)* is also discussed through a new algorithmic functional version of Bezout's theorem. As a result, interesting decomposition laws for (MMIO)'s over (Z/ϱZ)* are obtained. Several numerical examples confirming the theoretical results are also reported. |
author |
Cortés Vega,Luis A. |
author_facet |
Cortés Vega,Luis A. |
author_sort |
Cortés Vega,Luis A. |
title |
A general method for to decompose modular multiplicative inverse operators over Group of units |
title_short |
A general method for to decompose modular multiplicative inverse operators over Group of units |
title_full |
A general method for to decompose modular multiplicative inverse operators over Group of units |
title_fullStr |
A general method for to decompose modular multiplicative inverse operators over Group of units |
title_full_unstemmed |
A general method for to decompose modular multiplicative inverse operators over Group of units |
title_sort |
general method for to decompose modular multiplicative inverse operators over group of units |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2018 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200265 |
work_keys_str_mv |
AT cortesvegaluisa ageneralmethodfortodecomposemodularmultiplicativeinverseoperatorsovergroupofunits AT cortesvegaluisa generalmethodfortodecomposemodularmultiplicativeinverseoperatorsovergroupofunits |
_version_ |
1718439834286030848 |