Upper double monophonic number of a graph
Abstract: A set S of a connected graph G of order n is called a double monophonic set of G if for every pair of vertices x, y in G there exist vertices u, v in S such that x, y lie on a u-v monophonic path. The double monophonic number dm(G) of G is the minimum cardinality of a double monophonic set...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200295 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172018000200295 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720180002002952018-05-29Upper double monophonic number of a graphSanthakumaran,A. P.Raghu,T. Venkata Double monophonic set double monophonic number upper double monophonic set upper double monophonic number Abstract: A set S of a connected graph G of order n is called a double monophonic set of G if for every pair of vertices x, y in G there exist vertices u, v in S such that x, y lie on a u-v monophonic path. The double monophonic number dm(G) of G is the minimum cardinality of a double monophonic set. A double monophonic set S in a connected graph G is called a minimal double monophonic set if no proper subset of S is a double monophonic set of G. The upper double monophonic number of G is the maximum cardinality of a minimal double monophonic set of G, and is denoted by dm+(G). Some general properties satisfied by upper double monophonic sets are discussed. It is proved that for a connected graph G of order n, dm(G)=n if and only if dm+(G)=n. It is also proved that dm(G)=n-1 if and only if dm+(G)=n-1 for a non-complete graph G of order n with a full degree vertex. For any positive integers 2 ≤ a ≤ b, there exists a connected graph G with dm(G)= a and dm+(G)=b.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.37 n.2 20182018-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200295en10.4067/S0716-09172018000200295 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Double monophonic set double monophonic number upper double monophonic set upper double monophonic number |
spellingShingle |
Double monophonic set double monophonic number upper double monophonic set upper double monophonic number Santhakumaran,A. P. Raghu,T. Venkata Upper double monophonic number of a graph |
description |
Abstract: A set S of a connected graph G of order n is called a double monophonic set of G if for every pair of vertices x, y in G there exist vertices u, v in S such that x, y lie on a u-v monophonic path. The double monophonic number dm(G) of G is the minimum cardinality of a double monophonic set. A double monophonic set S in a connected graph G is called a minimal double monophonic set if no proper subset of S is a double monophonic set of G. The upper double monophonic number of G is the maximum cardinality of a minimal double monophonic set of G, and is denoted by dm+(G). Some general properties satisfied by upper double monophonic sets are discussed. It is proved that for a connected graph G of order n, dm(G)=n if and only if dm+(G)=n. It is also proved that dm(G)=n-1 if and only if dm+(G)=n-1 for a non-complete graph G of order n with a full degree vertex. For any positive integers 2 ≤ a ≤ b, there exists a connected graph G with dm(G)= a and dm+(G)=b. |
author |
Santhakumaran,A. P. Raghu,T. Venkata |
author_facet |
Santhakumaran,A. P. Raghu,T. Venkata |
author_sort |
Santhakumaran,A. P. |
title |
Upper double monophonic number of a graph |
title_short |
Upper double monophonic number of a graph |
title_full |
Upper double monophonic number of a graph |
title_fullStr |
Upper double monophonic number of a graph |
title_full_unstemmed |
Upper double monophonic number of a graph |
title_sort |
upper double monophonic number of a graph |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2018 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200295 |
work_keys_str_mv |
AT santhakumaranap upperdoublemonophonicnumberofagraph AT raghutvenkata upperdoublemonophonicnumberofagraph |
_version_ |
1718439834614235136 |