Upper double monophonic number of a graph

Abstract: A set S of a connected graph G of order n is called a double monophonic set of G if for every pair of vertices x, y in G there exist vertices u, v in S such that x, y lie on a u-v monophonic path. The double monophonic number dm(G) of G is the minimum cardinality of a double monophonic set...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Santhakumaran,A. P., Raghu,T. Venkata
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200295
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172018000200295
record_format dspace
spelling oai:scielo:S0716-091720180002002952018-05-29Upper double monophonic number of a graphSanthakumaran,A. P.Raghu,T. Venkata Double monophonic set double monophonic number upper double monophonic set upper double monophonic number Abstract: A set S of a connected graph G of order n is called a double monophonic set of G if for every pair of vertices x, y in G there exist vertices u, v in S such that x, y lie on a u-v monophonic path. The double monophonic number dm(G) of G is the minimum cardinality of a double monophonic set. A double monophonic set S in a connected graph G is called a minimal double monophonic set if no proper subset of S is a double monophonic set of G. The upper double monophonic number of G is the maximum cardinality of a minimal double monophonic set of G, and is denoted by dm+(G). Some general properties satisfied by upper double monophonic sets are discussed. It is proved that for a connected graph G of order n, dm(G)=n if and only if dm+(G)=n. It is also proved that dm(G)=n-1 if and only if dm+(G)=n-1 for a non-complete graph G of order n with a full degree vertex. For any positive integers 2 ≤ a ≤ b, there exists a connected graph G with dm(G)= a and dm+(G)=b.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.37 n.2 20182018-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200295en10.4067/S0716-09172018000200295
institution Scielo Chile
collection Scielo Chile
language English
topic Double monophonic set
double monophonic number
upper double monophonic set
upper double monophonic number
spellingShingle Double monophonic set
double monophonic number
upper double monophonic set
upper double monophonic number
Santhakumaran,A. P.
Raghu,T. Venkata
Upper double monophonic number of a graph
description Abstract: A set S of a connected graph G of order n is called a double monophonic set of G if for every pair of vertices x, y in G there exist vertices u, v in S such that x, y lie on a u-v monophonic path. The double monophonic number dm(G) of G is the minimum cardinality of a double monophonic set. A double monophonic set S in a connected graph G is called a minimal double monophonic set if no proper subset of S is a double monophonic set of G. The upper double monophonic number of G is the maximum cardinality of a minimal double monophonic set of G, and is denoted by dm+(G). Some general properties satisfied by upper double monophonic sets are discussed. It is proved that for a connected graph G of order n, dm(G)=n if and only if dm+(G)=n. It is also proved that dm(G)=n-1 if and only if dm+(G)=n-1 for a non-complete graph G of order n with a full degree vertex. For any positive integers 2 ≤ a ≤ b, there exists a connected graph G with dm(G)= a and dm+(G)=b.
author Santhakumaran,A. P.
Raghu,T. Venkata
author_facet Santhakumaran,A. P.
Raghu,T. Venkata
author_sort Santhakumaran,A. P.
title Upper double monophonic number of a graph
title_short Upper double monophonic number of a graph
title_full Upper double monophonic number of a graph
title_fullStr Upper double monophonic number of a graph
title_full_unstemmed Upper double monophonic number of a graph
title_sort upper double monophonic number of a graph
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2018
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200295
work_keys_str_mv AT santhakumaranap upperdoublemonophonicnumberofagraph
AT raghutvenkata upperdoublemonophonicnumberofagraph
_version_ 1718439834614235136