Solutions and stability of a variant of Wilson's functional equation
Abstract: In this paper we will investigate the complex-valued solutions and stability of the generalized variant of Wilson's functional equation (E): 𝑓(xy)+χ(y)𝑓(σ(y)x)=2𝑓(x)g(y), x,y ∈ G, where G is a group, σ is an invo...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200317 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172018000200317 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720180002003172018-05-29Solutions and stability of a variant of Wilson's functional equationElqorachi,ElhoucienRedouani,Ahmed Semigroup-Involution D'Alembert's equation Wilson's equation Automorphism Homomorphism Multiplicative function Hyers-Ulam stability Superstability Abstract: In this paper we will investigate the complex-valued solutions and stability of the generalized variant of Wilson's functional equation (E): 𝑓(xy)+χ(y)𝑓(σ(y)x)=2𝑓(x)g(y), x,y ∈ G, where G is a group, σ is an involutive morphism of G and χ is a character of G. (a) We solve (E) when σ is an involutive automorphism, and we obtain some properties about solutions of (E) when σ is an involutive anti-automorphism. (b) We obtain the Hyers Ulam stability of equation (E). As an application, we prove the superstability of the functional equation (xy)+χ(y) 𝑓(σ(y)x)=2 𝑓(x) 𝑓(y), x,y ∈ G.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.37 n.2 20182018-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200317en10.4067/S0716-09172018000200317 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Semigroup-Involution D'Alembert's equation Wilson's equation Automorphism Homomorphism Multiplicative function Hyers-Ulam stability Superstability |
spellingShingle |
Semigroup-Involution D'Alembert's equation Wilson's equation Automorphism Homomorphism Multiplicative function Hyers-Ulam stability Superstability Elqorachi,Elhoucien Redouani,Ahmed Solutions and stability of a variant of Wilson's functional equation |
description |
Abstract: In this paper we will investigate the complex-valued solutions and stability of the generalized variant of Wilson's functional equation (E): 𝑓(xy)+χ(y)𝑓(σ(y)x)=2𝑓(x)g(y), x,y ∈ G, where G is a group, σ is an involutive morphism of G and χ is a character of G. (a) We solve (E) when σ is an involutive automorphism, and we obtain some properties about solutions of (E) when σ is an involutive anti-automorphism. (b) We obtain the Hyers Ulam stability of equation (E). As an application, we prove the superstability of the functional equation (xy)+χ(y) 𝑓(σ(y)x)=2 𝑓(x) 𝑓(y), x,y ∈ G. |
author |
Elqorachi,Elhoucien Redouani,Ahmed |
author_facet |
Elqorachi,Elhoucien Redouani,Ahmed |
author_sort |
Elqorachi,Elhoucien |
title |
Solutions and stability of a variant of Wilson's functional equation |
title_short |
Solutions and stability of a variant of Wilson's functional equation |
title_full |
Solutions and stability of a variant of Wilson's functional equation |
title_fullStr |
Solutions and stability of a variant of Wilson's functional equation |
title_full_unstemmed |
Solutions and stability of a variant of Wilson's functional equation |
title_sort |
solutions and stability of a variant of wilson's functional equation |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2018 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200317 |
work_keys_str_mv |
AT elqorachielhoucien solutionsandstabilityofavariantofwilsonsfunctionalequation AT redouaniahmed solutionsandstabilityofavariantofwilsonsfunctionalequation |
_version_ |
1718439835243380736 |