Solutions and stability of a variant of Wilson's functional equation

Abstract: In this paper we will investigate the complex-valued solutions and stability of the generalized variant of Wilson's functional equation (E): 𝑓(xy)+χ(y)𝑓(σ(y)x)=2𝑓(x)g(y), x,y ∈ G, where G is a group, σ is an invo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Elqorachi,Elhoucien, Redouani,Ahmed
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200317
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172018000200317
record_format dspace
spelling oai:scielo:S0716-091720180002003172018-05-29Solutions and stability of a variant of Wilson's functional equationElqorachi,ElhoucienRedouani,Ahmed Semigroup-Involution D'Alembert's equation Wilson's equation Automorphism Homomorphism Multiplicative function Hyers-Ulam stability Superstability Abstract: In this paper we will investigate the complex-valued solutions and stability of the generalized variant of Wilson's functional equation (E): 𝑓(xy)+χ(y)𝑓(σ(y)x)=2𝑓(x)g(y), x,y ∈ G, where G is a group, σ is an involutive morphism of G and χ is a character of G. (a) We solve (E) when σ is an involutive automorphism, and we obtain some properties about solutions of (E) when σ is an involutive anti-automorphism. (b) We obtain the Hyers Ulam stability of equation (E). As an application, we prove the superstability of the functional equation (xy)+χ(y) 𝑓(σ(y)x)=2 𝑓(x) 𝑓(y), x,y ∈ G.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.37 n.2 20182018-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200317en10.4067/S0716-09172018000200317
institution Scielo Chile
collection Scielo Chile
language English
topic Semigroup-Involution
D'Alembert's equation
Wilson's equation
Automorphism
Homomorphism
Multiplicative function
Hyers-Ulam stability
Superstability
spellingShingle Semigroup-Involution
D'Alembert's equation
Wilson's equation
Automorphism
Homomorphism
Multiplicative function
Hyers-Ulam stability
Superstability
Elqorachi,Elhoucien
Redouani,Ahmed
Solutions and stability of a variant of Wilson's functional equation
description Abstract: In this paper we will investigate the complex-valued solutions and stability of the generalized variant of Wilson's functional equation (E): 𝑓(xy)+χ(y)𝑓(σ(y)x)=2𝑓(x)g(y), x,y ∈ G, where G is a group, σ is an involutive morphism of G and χ is a character of G. (a) We solve (E) when σ is an involutive automorphism, and we obtain some properties about solutions of (E) when σ is an involutive anti-automorphism. (b) We obtain the Hyers Ulam stability of equation (E). As an application, we prove the superstability of the functional equation (xy)+χ(y) 𝑓(σ(y)x)=2 𝑓(x) 𝑓(y), x,y ∈ G.
author Elqorachi,Elhoucien
Redouani,Ahmed
author_facet Elqorachi,Elhoucien
Redouani,Ahmed
author_sort Elqorachi,Elhoucien
title Solutions and stability of a variant of Wilson's functional equation
title_short Solutions and stability of a variant of Wilson's functional equation
title_full Solutions and stability of a variant of Wilson's functional equation
title_fullStr Solutions and stability of a variant of Wilson's functional equation
title_full_unstemmed Solutions and stability of a variant of Wilson's functional equation
title_sort solutions and stability of a variant of wilson's functional equation
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2018
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000200317
work_keys_str_mv AT elqorachielhoucien solutionsandstabilityofavariantofwilsonsfunctionalequation
AT redouaniahmed solutionsandstabilityofavariantofwilsonsfunctionalequation
_version_ 1718439835243380736