Edge-to-vertex m-detour monophonic number of a graph

Abstract For a connected graph G = (V, E) of order at least three, the monophonic distance dm(u, v) is the length of a longest u − v monophonic path in G. A u − v path of length dm(u, v) is called a u − v detour monophonic. For subsets A and B of V, the m-monophonic dis...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Santhakumaran,A. P., Titus,P., Ganesamoorthy,K.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000300415
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172018000300415
record_format dspace
spelling oai:scielo:S0716-091720180003004152018-10-10Edge-to-vertex m-detour monophonic number of a graphSanthakumaran,A. P.Titus,P.Ganesamoorthy,K. monophonic distance m-detour monophonic path edge-to-vertex m-detour monophonic set edge-to-vertex m-detour monophonic basis edge-to-vertex m-detour monophonic number. Abstract For a connected graph G = (V, E) of order at least three, the monophonic distance dm(u, v) is the length of a longest u &#8722; v monophonic path in G. A u &#8722; v path of length dm(u, v) is called a u &#8722; v detour monophonic. For subsets A and B of V, the m-monophonic distance Dm(A, B) is defined as Dm(A, B) = max{dm(x, y) : x &#8712; A, y &#8712; B}. A u &#8722; v path of length Dm(A, B) is called a A &#8722; B m-detour monophonic path joining the sets A, B &#8838; V, where u &#8712; A and v &#8712; B. A set S &#8838; E is called an edge-to-vertex m-detour monophonic set of G if every vertex of G is incident with an edge of S or lies on a m-detour monophonic path joining a pair of edges of S. The edge-to-vertex mdetour monophonic number Dmev(G) of G is the minimum order of its edge-to-vertex m-detour monophonic sets and any edge-to-vertex m-detour monophonic set of order Dmev(G) is an edge-to-vertex mdetour monophonic basis of G. Some general properties satisfied by this parameter are studied. The edge-to-vertex m-detour monophonic number of certain classes of graphs are determined. It is shown that for positive integers r, d and k &#8805; 4 with r < d, there exists a connected graph G such that radm(G) = r, diamm(G) = d and Dmev(G) = k.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.37 n.3 20182018-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000300415en10.4067/S0716-09172018000300415
institution Scielo Chile
collection Scielo Chile
language English
topic monophonic distance
m-detour monophonic path
edge-to-vertex m-detour monophonic set
edge-to-vertex m-detour monophonic basis
edge-to-vertex m-detour monophonic number.
spellingShingle monophonic distance
m-detour monophonic path
edge-to-vertex m-detour monophonic set
edge-to-vertex m-detour monophonic basis
edge-to-vertex m-detour monophonic number.
Santhakumaran,A. P.
Titus,P.
Ganesamoorthy,K.
Edge-to-vertex m-detour monophonic number of a graph
description Abstract For a connected graph G = (V, E) of order at least three, the monophonic distance dm(u, v) is the length of a longest u &#8722; v monophonic path in G. A u &#8722; v path of length dm(u, v) is called a u &#8722; v detour monophonic. For subsets A and B of V, the m-monophonic distance Dm(A, B) is defined as Dm(A, B) = max{dm(x, y) : x &#8712; A, y &#8712; B}. A u &#8722; v path of length Dm(A, B) is called a A &#8722; B m-detour monophonic path joining the sets A, B &#8838; V, where u &#8712; A and v &#8712; B. A set S &#8838; E is called an edge-to-vertex m-detour monophonic set of G if every vertex of G is incident with an edge of S or lies on a m-detour monophonic path joining a pair of edges of S. The edge-to-vertex mdetour monophonic number Dmev(G) of G is the minimum order of its edge-to-vertex m-detour monophonic sets and any edge-to-vertex m-detour monophonic set of order Dmev(G) is an edge-to-vertex mdetour monophonic basis of G. Some general properties satisfied by this parameter are studied. The edge-to-vertex m-detour monophonic number of certain classes of graphs are determined. It is shown that for positive integers r, d and k &#8805; 4 with r < d, there exists a connected graph G such that radm(G) = r, diamm(G) = d and Dmev(G) = k.
author Santhakumaran,A. P.
Titus,P.
Ganesamoorthy,K.
author_facet Santhakumaran,A. P.
Titus,P.
Ganesamoorthy,K.
author_sort Santhakumaran,A. P.
title Edge-to-vertex m-detour monophonic number of a graph
title_short Edge-to-vertex m-detour monophonic number of a graph
title_full Edge-to-vertex m-detour monophonic number of a graph
title_fullStr Edge-to-vertex m-detour monophonic number of a graph
title_full_unstemmed Edge-to-vertex m-detour monophonic number of a graph
title_sort edge-to-vertex m-detour monophonic number of a graph
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2018
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000300415
work_keys_str_mv AT santhakumaranap edgetovertexmdetourmonophonicnumberofagraph
AT titusp edgetovertexmdetourmonophonicnumberofagraph
AT ganesamoorthyk edgetovertexmdetourmonophonicnumberofagraph
_version_ 1718439836728164352