A computer verification for the value of the Topological Entropy for some special subshifts in the Lexicographical Scenario
Abstract: The Lorenz Attractor has been a source for many mathematical studies. Most of them deal with lower dimensional representations of its first return map. An one dimensional scenario can be modeled by the standard two parameter family of contracting Lorenz maps. The dynamics, in this case, ca...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000300439 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172018000300439 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720180003004392018-10-10A computer verification for the value of the Topological Entropy for some special subshifts in the Lexicographical ScenarioAranzubia,SolangeCarvajal,RubénLabarca,Rafael Lexicographical world topological entropy maximal and minimal sequences shift map Lorenz Maps. Abstract: The Lorenz Attractor has been a source for many mathematical studies. Most of them deal with lower dimensional representations of its first return map. An one dimensional scenario can be modeled by the standard two parameter family of contracting Lorenz maps. The dynamics, in this case, can be modeled by a subshift in the Lexicographical model. The Lexicographical model is the set of two symbols with the topology induced by the lexicographical metric and with the lexicographical order. These subshifts are the maximal invariant set for the shift map in some interval. For some of them, the extremes of the interval are a minimal periodic sequence and a maximal periodic sequence which is an iteration of the lower extreme (by the shift map). For some of these subshifts the topological entropy is zero. In this case the dynamics (of the respective Lorenz map) is simple.Associated to any of these subshifts (let call it Λ) we consider an extension (let call it Γ) that contains Λ which also can be constructed by using an interval whose extremes can be defined by the extremes of Λ. For these extensions we present here a computer verification of the result that compute its topological entropy. As a consequence, of our results, we can say: the longer the period of the periodic sequence is then the lower complexity in the dynamics of the extension the associated map has.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.37 n.3 20182018-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000300439en10.4067/S0716-09172018000300439 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Lexicographical world topological entropy maximal and minimal sequences shift map Lorenz Maps. |
spellingShingle |
Lexicographical world topological entropy maximal and minimal sequences shift map Lorenz Maps. Aranzubia,Solange Carvajal,Rubén Labarca,Rafael A computer verification for the value of the Topological Entropy for some special subshifts in the Lexicographical Scenario |
description |
Abstract: The Lorenz Attractor has been a source for many mathematical studies. Most of them deal with lower dimensional representations of its first return map. An one dimensional scenario can be modeled by the standard two parameter family of contracting Lorenz maps. The dynamics, in this case, can be modeled by a subshift in the Lexicographical model. The Lexicographical model is the set of two symbols with the topology induced by the lexicographical metric and with the lexicographical order. These subshifts are the maximal invariant set for the shift map in some interval. For some of them, the extremes of the interval are a minimal periodic sequence and a maximal periodic sequence which is an iteration of the lower extreme (by the shift map). For some of these subshifts the topological entropy is zero. In this case the dynamics (of the respective Lorenz map) is simple.Associated to any of these subshifts (let call it Λ) we consider an extension (let call it Γ) that contains Λ which also can be constructed by using an interval whose extremes can be defined by the extremes of Λ. For these extensions we present here a computer verification of the result that compute its topological entropy. As a consequence, of our results, we can say: the longer the period of the periodic sequence is then the lower complexity in the dynamics of the extension the associated map has. |
author |
Aranzubia,Solange Carvajal,Rubén Labarca,Rafael |
author_facet |
Aranzubia,Solange Carvajal,Rubén Labarca,Rafael |
author_sort |
Aranzubia,Solange |
title |
A computer verification for the value of the Topological Entropy for some special subshifts in the Lexicographical Scenario |
title_short |
A computer verification for the value of the Topological Entropy for some special subshifts in the Lexicographical Scenario |
title_full |
A computer verification for the value of the Topological Entropy for some special subshifts in the Lexicographical Scenario |
title_fullStr |
A computer verification for the value of the Topological Entropy for some special subshifts in the Lexicographical Scenario |
title_full_unstemmed |
A computer verification for the value of the Topological Entropy for some special subshifts in the Lexicographical Scenario |
title_sort |
computer verification for the value of the topological entropy for some special subshifts in the lexicographical scenario |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2018 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000300439 |
work_keys_str_mv |
AT aranzubiasolange acomputerverificationforthevalueofthetopologicalentropyforsomespecialsubshiftsinthelexicographicalscenario AT carvajalruben acomputerverificationforthevalueofthetopologicalentropyforsomespecialsubshiftsinthelexicographicalscenario AT labarcarafael acomputerverificationforthevalueofthetopologicalentropyforsomespecialsubshiftsinthelexicographicalscenario AT aranzubiasolange computerverificationforthevalueofthetopologicalentropyforsomespecialsubshiftsinthelexicographicalscenario AT carvajalruben computerverificationforthevalueofthetopologicalentropyforsomespecialsubshiftsinthelexicographicalscenario AT labarcarafael computerverificationforthevalueofthetopologicalentropyforsomespecialsubshiftsinthelexicographicalscenario |
_version_ |
1718439837403447296 |