The t-pebbling number of Lamp graphs

Abstract Let G be a graph and some pebbles are distributed on its vertices. A pebbling move (step) consists of removing two pebbles from one vertex, throwing one pebble away, and moving the other pebble to an adjacent vertex. The t-pebbling number of a graph G is the least integer m such that from a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lourdusamy,A., Patrick,F., Mathivanan,T.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000300503
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Let G be a graph and some pebbles are distributed on its vertices. A pebbling move (step) consists of removing two pebbles from one vertex, throwing one pebble away, and moving the other pebble to an adjacent vertex. The t-pebbling number of a graph G is the least integer m such that from any distribution of m pebbles on the vertices of G, we can move t pebbles to any specified vertex by a sequence of pebbling moves. In this paper, we determine the t-pebbling number of Lamp graphs.