On the graded classical prime spectrum of a graded module
Abstract Let G be a group with identity e. Let R be a G-graded commutative ring and M a graded R-module. In this paper, we introduce and study a new topology on Cl.Specg(M), the collection of all graded classical prime submodules of M, called the Zariski-like topology. Then we investigate the relati...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000300519 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Let G be a group with identity e. Let R be a G-graded commutative ring and M a graded R-module. In this paper, we introduce and study a new topology on Cl.Specg(M), the collection of all graded classical prime submodules of M, called the Zariski-like topology. Then we investigate the relationship between algebraic properties of M and topological properties of Cl.Specg(M). Moreover, we study Cl.Specg(M) from point of view of spectral space. |
---|