An integral functional equation on groups under two measures
Abstract Let G be a locally compact Hausdorff group, let σ be a continuous involutive automorphism on G, and let μ, ν be regular, compactly supported, complex-valued Borel measures on G. We find the continuous solutions 𝑓 : G → C of the functional equ...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000300565 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172018000300565 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720180003005652018-10-10An integral functional equation on groups under two measuresFadli,B.Zeglami,D.Kabbaj,S. Functional equation Van Vleck Kannappan involutive automorphism group character. Abstract Let G be a locally compact Hausdorff group, let σ be a continuous involutive automorphism on G, and let μ, ν be regular, compactly supported, complex-valued Borel measures on G. We find the continuous solutions 𝑓 : G → C of the functional equation in terms of continuous characters of G. This equation provides a common generalization of many functional equations (d’Alembert’s, Cauchy’s, Gajda’s, Kannappan’s, Stetkær’s, Van Vleck’s equations...). So, a large class of functional equations will be solved.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.37 n.3 20182018-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000300565en10.4067/S0716-09172018000300565 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Functional equation Van Vleck Kannappan involutive automorphism group character. |
spellingShingle |
Functional equation Van Vleck Kannappan involutive automorphism group character. Fadli,B. Zeglami,D. Kabbaj,S. An integral functional equation on groups under two measures |
description |
Abstract Let G be a locally compact Hausdorff group, let σ be a continuous involutive automorphism on G, and let μ, ν be regular, compactly supported, complex-valued Borel measures on G. We find the continuous solutions 𝑓 : G → C of the functional equation in terms of continuous characters of G. This equation provides a common generalization of many functional equations (d’Alembert’s, Cauchy’s, Gajda’s, Kannappan’s, Stetkær’s, Van Vleck’s equations...). So, a large class of functional equations will be solved. |
author |
Fadli,B. Zeglami,D. Kabbaj,S. |
author_facet |
Fadli,B. Zeglami,D. Kabbaj,S. |
author_sort |
Fadli,B. |
title |
An integral functional equation on groups under two measures |
title_short |
An integral functional equation on groups under two measures |
title_full |
An integral functional equation on groups under two measures |
title_fullStr |
An integral functional equation on groups under two measures |
title_full_unstemmed |
An integral functional equation on groups under two measures |
title_sort |
integral functional equation on groups under two measures |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2018 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000300565 |
work_keys_str_mv |
AT fadlib anintegralfunctionalequationongroupsundertwomeasures AT zeglamid anintegralfunctionalequationongroupsundertwomeasures AT kabbajs anintegralfunctionalequationongroupsundertwomeasures AT fadlib integralfunctionalequationongroupsundertwomeasures AT zeglamid integralfunctionalequationongroupsundertwomeasures AT kabbajs integralfunctionalequationongroupsundertwomeasures |
_version_ |
1718439839098994688 |