On rough convergence of triple sequence spaces of Bernstein-Stancu operators of fuzzy numbers defined by a metric function

Abstract We define the concept of rough limit set of a triple sequence space of Bernstein-Stancu polynomials of fuzzy numbers and obtain the relation between the set of rough limit and the extreme limit points of a triple sequence space of Bernstein-Stancu polynomials of fuzzy numbers. Finally, we i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeyaram Bharathi,M., Velmurugan,S., Esi,A., Subramanian,N.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000400713
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172018000400713
record_format dspace
spelling oai:scielo:S0716-091720180004007132018-11-05On rough convergence of triple sequence spaces of Bernstein-Stancu operators of fuzzy numbers defined by a metric functionJeyaram Bharathi,M.Velmurugan,S.Esi,A.Subramanian,N. Triple sequences rough convergence closed and convex cluster points and rough limit points fuzzy numbers,Bernstein-Stancu polynomials. Abstract We define the concept of rough limit set of a triple sequence space of Bernstein-Stancu polynomials of fuzzy numbers and obtain the relation between the set of rough limit and the extreme limit points of a triple sequence space of Bernstein-Stancu polynomials of fuzzy numbers. Finally, we investigate some properties of the rough limit set of Bernstein-Stancu polynomials.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.37 n.4 20182018-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000400713en10.4067/S0716-09172018000400713
institution Scielo Chile
collection Scielo Chile
language English
topic Triple sequences
rough convergence
closed and convex
cluster points and rough limit points
fuzzy numbers,Bernstein-Stancu polynomials.
spellingShingle Triple sequences
rough convergence
closed and convex
cluster points and rough limit points
fuzzy numbers,Bernstein-Stancu polynomials.
Jeyaram Bharathi,M.
Velmurugan,S.
Esi,A.
Subramanian,N.
On rough convergence of triple sequence spaces of Bernstein-Stancu operators of fuzzy numbers defined by a metric function
description Abstract We define the concept of rough limit set of a triple sequence space of Bernstein-Stancu polynomials of fuzzy numbers and obtain the relation between the set of rough limit and the extreme limit points of a triple sequence space of Bernstein-Stancu polynomials of fuzzy numbers. Finally, we investigate some properties of the rough limit set of Bernstein-Stancu polynomials.
author Jeyaram Bharathi,M.
Velmurugan,S.
Esi,A.
Subramanian,N.
author_facet Jeyaram Bharathi,M.
Velmurugan,S.
Esi,A.
Subramanian,N.
author_sort Jeyaram Bharathi,M.
title On rough convergence of triple sequence spaces of Bernstein-Stancu operators of fuzzy numbers defined by a metric function
title_short On rough convergence of triple sequence spaces of Bernstein-Stancu operators of fuzzy numbers defined by a metric function
title_full On rough convergence of triple sequence spaces of Bernstein-Stancu operators of fuzzy numbers defined by a metric function
title_fullStr On rough convergence of triple sequence spaces of Bernstein-Stancu operators of fuzzy numbers defined by a metric function
title_full_unstemmed On rough convergence of triple sequence spaces of Bernstein-Stancu operators of fuzzy numbers defined by a metric function
title_sort on rough convergence of triple sequence spaces of bernstein-stancu operators of fuzzy numbers defined by a metric function
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2018
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000400713
work_keys_str_mv AT jeyarambharathim onroughconvergenceoftriplesequencespacesofbernsteinstancuoperatorsoffuzzynumbersdefinedbyametricfunction
AT velmurugans onroughconvergenceoftriplesequencespacesofbernsteinstancuoperatorsoffuzzynumbersdefinedbyametricfunction
AT esia onroughconvergenceoftriplesequencespacesofbernsteinstancuoperatorsoffuzzynumbersdefinedbyametricfunction
AT subramaniann onroughconvergenceoftriplesequencespacesofbernsteinstancuoperatorsoffuzzynumbersdefinedbyametricfunction
_version_ 1718439841031520256