On rough convergence of triple sequence spaces of Bernstein-Stancu operators of fuzzy numbers defined by a metric function
Abstract We define the concept of rough limit set of a triple sequence space of Bernstein-Stancu polynomials of fuzzy numbers and obtain the relation between the set of rough limit and the extreme limit points of a triple sequence space of Bernstein-Stancu polynomials of fuzzy numbers. Finally, we i...
Enregistré dans:
Auteurs principaux: | Jeyaram Bharathi,M., Velmurugan,S., Esi,A., Subramanian,N. |
---|---|
Langue: | English |
Publié: |
Universidad Católica del Norte, Departamento de Matemáticas
2018
|
Sujets: | |
Accès en ligne: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000400713 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
On rough convergence of triple sequence spaces of Bernstein-Stancu operators of fuzzy numbers defined by a metric function
par: Bharathi,M. Jeyaram, et autres
Publié: (2019) -
On rough convergence of triple sequence space of Bernstein operator of fuzzy numbers defined by a metric
par: Bharathi,M. Jeyaram, et autres
Publié: (2020) -
On Triple sequence space of Bernstein operator of Rough I- convergence pre-cauchy sequences
par: Esi,Ayhan, et autres
Publié: (2017) -
Rough statistical convergence on triple sequences
par: Debnath,Shyamal, et autres
Publié: (2017) -
Evaluation of wood surface roughness depending on species characteristics
par: Thoma,Hektor, et autres
Publié: (2015)