On rough convergence of triple sequence spaces of Bernstein-Stancu operators of fuzzy numbers defined by a metric function
Abstract We define the concept of rough limit set of a triple sequence space of Bernstein-Stancu polynomials of fuzzy numbers and obtain the relation between the set of rough limit and the extreme limit points of a triple sequence space of Bernstein-Stancu polynomials of fuzzy numbers. Finally, we i...
Guardado en:
Autores principales: | Jeyaram Bharathi,M., Velmurugan,S., Esi,A., Subramanian,N. |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000400713 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On rough convergence of triple sequence spaces of Bernstein-Stancu operators of fuzzy numbers defined by a metric function
por: Bharathi,M. Jeyaram, et al.
Publicado: (2019) -
On rough convergence of triple sequence space of Bernstein operator of fuzzy numbers defined by a metric
por: Bharathi,M. Jeyaram, et al.
Publicado: (2020) -
On Triple sequence space of Bernstein operator of Rough I- convergence pre-cauchy sequences
por: Esi,Ayhan, et al.
Publicado: (2017) -
Rough statistical convergence on triple sequences
por: Debnath,Shyamal, et al.
Publicado: (2017) -
Evaluation of wood surface roughness depending on species characteristics
por: Thoma,Hektor, et al.
Publicado: (2015)