Dual third-order Jacobsthal quaternions
Abstract In 2016, Yüce and Torunbalcı Aydın (18) defined dual Fibonacci quaternions. In this paper, we defined the dual third-order Jacobsthal quaternions and dual third-order Jacobsthal-Lucas quaternions. Also, we investigated the relations between the dual third-order Jacobsthal...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000400731 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172018000400731 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720180004007312018-11-05Dual third-order Jacobsthal quaternionsCerda-Morales,Gamaliel Third-order Jacobsthal number third-order Jacobsthal-Lucas number third-order Jacobsthal quaternions third-order Jacobsthal-Lucas quaternions dual quaternion Abstract In 2016, Yüce and Torunbalcı Aydın (18) defined dual Fibonacci quaternions. In this paper, we defined the dual third-order Jacobsthal quaternions and dual third-order Jacobsthal-Lucas quaternions. Also, we investigated the relations between the dual third-order Jacobsthal quaternions and third-order Jacobsthal numbers. Furthermore, we gave some their quadratic properties, the summations, the Binet’s formulas and Cassini-like identities for these quaternions.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.37 n.4 20182018-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000400731en10.4067/S0716-09172018000400731 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Third-order Jacobsthal number third-order Jacobsthal-Lucas number third-order Jacobsthal quaternions third-order Jacobsthal-Lucas quaternions dual quaternion |
spellingShingle |
Third-order Jacobsthal number third-order Jacobsthal-Lucas number third-order Jacobsthal quaternions third-order Jacobsthal-Lucas quaternions dual quaternion Cerda-Morales,Gamaliel Dual third-order Jacobsthal quaternions |
description |
Abstract In 2016, Yüce and Torunbalcı Aydın (18) defined dual Fibonacci quaternions. In this paper, we defined the dual third-order Jacobsthal quaternions and dual third-order Jacobsthal-Lucas quaternions. Also, we investigated the relations between the dual third-order Jacobsthal quaternions and third-order Jacobsthal numbers. Furthermore, we gave some their quadratic properties, the summations, the Binet’s formulas and Cassini-like identities for these quaternions. |
author |
Cerda-Morales,Gamaliel |
author_facet |
Cerda-Morales,Gamaliel |
author_sort |
Cerda-Morales,Gamaliel |
title |
Dual third-order Jacobsthal quaternions |
title_short |
Dual third-order Jacobsthal quaternions |
title_full |
Dual third-order Jacobsthal quaternions |
title_fullStr |
Dual third-order Jacobsthal quaternions |
title_full_unstemmed |
Dual third-order Jacobsthal quaternions |
title_sort |
dual third-order jacobsthal quaternions |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2018 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000400731 |
work_keys_str_mv |
AT cerdamoralesgamaliel dualthirdorderjacobsthalquaternions |
_version_ |
1718439841234944000 |