New interpretation of elliptic Boundary value problems via invariant embedding approach and Yosida regularization

Abstract The method of invariant embedding for the solutions of boundary value problems yields an equivalent formulation to the initial boundary value problems by a system of Riccati operator differential equations. A combined technique based on invariant embedding approach and Yosida regularization...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bouarroudj,Nadra, Belaib,Lekhmissi, Messirdi,Bekkai
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000400749
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The method of invariant embedding for the solutions of boundary value problems yields an equivalent formulation to the initial boundary value problems by a system of Riccati operator differential equations. A combined technique based on invariant embedding approach and Yosida regularization is proposed in this paper for solving abstract Riccati problems and Dirichlet problems for the Poisson equation over a circular domain. We exhibit, in polar coordinates, the associated Neumann to Dirichlet operator, somme concrete properties of this operator are given. It also comes that from the existence of a solution for the corresponding Riccati equation, the problem can be solved in appropriate Sobolev spaces.