Odd harmonious labeling of super subdivisión graphs

Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection 𝑓: V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function 𝑓∗: E(G) → {1, 3, · · · , 2q − 1} defined by 𝑓∗(uv) =...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeyanthi,P., Philo,S., Siddiqui,M. K.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection 𝑓: V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function 𝑓∗: E(G) → {1, 3, · · · , 2q − 1} defined by 𝑓∗(uv) = 𝑓 (u) + 𝑓 (v) is a bijection. In this paper we prove that super subdivision of any cycle Cm with m ≥ 3 ,ladder, cycle Cn for n ≡ 0(mod 4) with K1,m and uniform fire cracker are odd harmonious graphs.