Odd harmonious labeling of super subdivisión graphs
Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection 𝑓: V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function 𝑓∗: E(G) → {1, 3, · · · , 2q − 1} defined by 𝑓∗(uv) =...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172019000100001 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720190001000012019-02-08Odd harmonious labeling of super subdivisión graphsJeyanthi,P.Philo,S.Siddiqui,M. K. harmonious labeling odd harmonious labeling super subdivision of graphs Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection 𝑓: V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function 𝑓∗: E(G) → {1, 3, · · · , 2q − 1} defined by 𝑓∗(uv) = 𝑓 (u) + 𝑓 (v) is a bijection. In this paper we prove that super subdivision of any cycle Cm with m ≥ 3 ,ladder, cycle Cn for n ≡ 0(mod 4) with K1,m and uniform fire cracker are odd harmonious graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.1 20192019-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100001en10.4067/S0716-09172019000100001 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
harmonious labeling odd harmonious labeling super subdivision of graphs |
spellingShingle |
harmonious labeling odd harmonious labeling super subdivision of graphs Jeyanthi,P. Philo,S. Siddiqui,M. K. Odd harmonious labeling of super subdivisión graphs |
description |
Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection 𝑓: V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function 𝑓∗: E(G) → {1, 3, · · · , 2q − 1} defined by 𝑓∗(uv) = 𝑓 (u) + 𝑓 (v) is a bijection. In this paper we prove that super subdivision of any cycle Cm with m ≥ 3 ,ladder, cycle Cn for n ≡ 0(mod 4) with K1,m and uniform fire cracker are odd harmonious graphs. |
author |
Jeyanthi,P. Philo,S. Siddiqui,M. K. |
author_facet |
Jeyanthi,P. Philo,S. Siddiqui,M. K. |
author_sort |
Jeyanthi,P. |
title |
Odd harmonious labeling of super subdivisión graphs |
title_short |
Odd harmonious labeling of super subdivisión graphs |
title_full |
Odd harmonious labeling of super subdivisión graphs |
title_fullStr |
Odd harmonious labeling of super subdivisión graphs |
title_full_unstemmed |
Odd harmonious labeling of super subdivisión graphs |
title_sort |
odd harmonious labeling of super subdivisión graphs |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100001 |
work_keys_str_mv |
AT jeyanthip oddharmoniouslabelingofsupersubdivisiongraphs AT philos oddharmoniouslabelingofsupersubdivisiongraphs AT siddiquimk oddharmoniouslabelingofsupersubdivisiongraphs |
_version_ |
1718439842345385984 |