Odd harmonious labeling of super subdivisión graphs

Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection 𝑓: V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function 𝑓∗: E(G) → {1, 3, · · · , 2q − 1} defined by 𝑓∗(uv) =...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeyanthi,P., Philo,S., Siddiqui,M. K.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172019000100001
record_format dspace
spelling oai:scielo:S0716-091720190001000012019-02-08Odd harmonious labeling of super subdivisión graphsJeyanthi,P.Philo,S.Siddiqui,M. K. harmonious labeling odd harmonious labeling super subdivision of graphs Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection 𝑓: V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function 𝑓∗: E(G) → {1, 3, · · · , 2q − 1} defined by 𝑓∗(uv) = 𝑓 (u) + 𝑓 (v) is a bijection. In this paper we prove that super subdivision of any cycle Cm with m ≥ 3 ,ladder, cycle Cn for n ≡ 0(mod 4) with K1,m and uniform fire cracker are odd harmonious graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.1 20192019-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100001en10.4067/S0716-09172019000100001
institution Scielo Chile
collection Scielo Chile
language English
topic harmonious labeling
odd harmonious labeling
super subdivision of graphs
spellingShingle harmonious labeling
odd harmonious labeling
super subdivision of graphs
Jeyanthi,P.
Philo,S.
Siddiqui,M. K.
Odd harmonious labeling of super subdivisión graphs
description Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection 𝑓: V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function 𝑓∗: E(G) → {1, 3, · · · , 2q − 1} defined by 𝑓∗(uv) = 𝑓 (u) + 𝑓 (v) is a bijection. In this paper we prove that super subdivision of any cycle Cm with m ≥ 3 ,ladder, cycle Cn for n ≡ 0(mod 4) with K1,m and uniform fire cracker are odd harmonious graphs.
author Jeyanthi,P.
Philo,S.
Siddiqui,M. K.
author_facet Jeyanthi,P.
Philo,S.
Siddiqui,M. K.
author_sort Jeyanthi,P.
title Odd harmonious labeling of super subdivisión graphs
title_short Odd harmonious labeling of super subdivisión graphs
title_full Odd harmonious labeling of super subdivisión graphs
title_fullStr Odd harmonious labeling of super subdivisión graphs
title_full_unstemmed Odd harmonious labeling of super subdivisión graphs
title_sort odd harmonious labeling of super subdivisión graphs
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100001
work_keys_str_mv AT jeyanthip oddharmoniouslabelingofsupersubdivisiongraphs
AT philos oddharmoniouslabelingofsupersubdivisiongraphs
AT siddiquimk oddharmoniouslabelingofsupersubdivisiongraphs
_version_ 1718439842345385984