3-product cordial labeling of some snake graphs

Abstract Let G be a (p,q) graph. A mapping 𝑓 : V (G) → {0, 1, 2} is called 3-product cordial labeling if |v𝑓(i) − v𝑓 (j)| ≤ 1 and |e𝑓 (i) − e𝑓 (j)| ≤ 1 for any i, j ∈ {0, 1, 2},w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeyanthi,P., Maheswari,A., Vijayalakshmi,M.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100013
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Let G be a (p,q) graph. A mapping 𝑓 : V (G) → {0, 1, 2} is called 3-product cordial labeling if |v𝑓(i) − v𝑓 (j)| ≤ 1 and |e𝑓 (i) − e𝑓 (j)| ≤ 1 for any i, j ∈ {0, 1, 2},where v𝑓 (i) denotes the number of vertices labeled with i, e𝑓 (i) denotes the number of edges xy with 𝑓(x)𝑓(y) ≡ i(mod3). A graph with 3-product cordial labeling is called 3-product cordial graph. In this paper we investigate the 3-product cordial behavior of alternate triangular snake, double alternate triangular snake and triangular snake graphs.