3-product cordial labeling of some snake graphs

Abstract Let G be a (p,q) graph. A mapping 𝑓 : V (G) → {0, 1, 2} is called 3-product cordial labeling if |v𝑓(i) − v𝑓 (j)| ≤ 1 and |e𝑓 (i) − e𝑓 (j)| ≤ 1 for any i, j ∈ {0, 1, 2},w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeyanthi,P., Maheswari,A., Vijayalakshmi,M.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100013
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172019000100013
record_format dspace
spelling oai:scielo:S0716-091720190001000132019-02-083-product cordial labeling of some snake graphsJeyanthi,P.Maheswari,A.Vijayalakshmi,M. cordial labeling product cordial labeling 3-product cordial labeling 3-product cordial graph alternate triangular snake doublé alternate triangular snake triangular snake graph Abstract Let G be a (p,q) graph. A mapping 𝑓 : V (G) → {0, 1, 2} is called 3-product cordial labeling if |v𝑓(i) − v𝑓 (j)| ≤ 1 and |e𝑓 (i) − e𝑓 (j)| ≤ 1 for any i, j ∈ {0, 1, 2},where v𝑓 (i) denotes the number of vertices labeled with i, e𝑓 (i) denotes the number of edges xy with 𝑓(x)𝑓(y) ≡ i(mod3). A graph with 3-product cordial labeling is called 3-product cordial graph. In this paper we investigate the 3-product cordial behavior of alternate triangular snake, double alternate triangular snake and triangular snake graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.1 20192019-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100013en10.4067/S0716-09172019000100013
institution Scielo Chile
collection Scielo Chile
language English
topic cordial labeling
product cordial labeling
3-product cordial labeling
3-product cordial graph
alternate triangular snake
doublé alternate triangular snake
triangular snake graph
spellingShingle cordial labeling
product cordial labeling
3-product cordial labeling
3-product cordial graph
alternate triangular snake
doublé alternate triangular snake
triangular snake graph
Jeyanthi,P.
Maheswari,A.
Vijayalakshmi,M.
3-product cordial labeling of some snake graphs
description Abstract Let G be a (p,q) graph. A mapping 𝑓 : V (G) → {0, 1, 2} is called 3-product cordial labeling if |v𝑓(i) − v𝑓 (j)| ≤ 1 and |e𝑓 (i) − e𝑓 (j)| ≤ 1 for any i, j ∈ {0, 1, 2},where v𝑓 (i) denotes the number of vertices labeled with i, e𝑓 (i) denotes the number of edges xy with 𝑓(x)𝑓(y) ≡ i(mod3). A graph with 3-product cordial labeling is called 3-product cordial graph. In this paper we investigate the 3-product cordial behavior of alternate triangular snake, double alternate triangular snake and triangular snake graphs.
author Jeyanthi,P.
Maheswari,A.
Vijayalakshmi,M.
author_facet Jeyanthi,P.
Maheswari,A.
Vijayalakshmi,M.
author_sort Jeyanthi,P.
title 3-product cordial labeling of some snake graphs
title_short 3-product cordial labeling of some snake graphs
title_full 3-product cordial labeling of some snake graphs
title_fullStr 3-product cordial labeling of some snake graphs
title_full_unstemmed 3-product cordial labeling of some snake graphs
title_sort 3-product cordial labeling of some snake graphs
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100013
work_keys_str_mv AT jeyanthip 3productcordiallabelingofsomesnakegraphs
AT maheswaria 3productcordiallabelingofsomesnakegraphs
AT vijayalakshmim 3productcordiallabelingofsomesnakegraphs
_version_ 1718439842672541696