Algorithm for the generalized Φ-strongly monotone mappings and application to the generalized convex optimization problem
Abstract Let E be a uniformly smooth and uniformly convex real Banach space and E∗ be its dual space. We consider a multivalued mapping A : E → 2E∗ which is bounded, generalized Φ-strongly monotone and such that for all t > 0, the range R(Jp+tA) = Eͨ...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100059 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Let E be a uniformly smooth and uniformly convex real Banach space and E∗ be its dual space. We consider a multivalued mapping A : E → 2E∗ which is bounded, generalized Φ-strongly monotone and such that for all t > 0, the range R(Jp+tA) = E∗, where Jp (p > 1) is the generalized duality mapping from E into 2E∗ . Suppose A−1(0) = ∅, we construct an algorithm which converges strongly to the solution of 0 ∈ Ax. The result is then applied to the generalized convex optimization problem. |
---|