3-difference cordiality of some corona graphs

Abstract Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map where k is an integer 2 ≤ k ≤ p. For each edge uv, assign the label |f (u) − f (v)|. f is called k-difference cordial labeling of G if |vf (i) − vf (j)| ≤ 1 and |e...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ponraj,R., Adaickalam,M. Maria, Kala,R.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100083
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172019000100083
record_format dspace
spelling oai:scielo:S0716-091720190001000832019-02-083-difference cordiality of some corona graphsPonraj,R.Adaickalam,M. MariaKala,R. Cycle path triangular snake quadrilateral snake difference cordial Abstract Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map where k is an integer 2 ≤ k ≤ p. For each edge uv, assign the label |f (u) − f (v)|. f is called k-difference cordial labeling of G if |vf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the umber of vertices labelled with x, ef (1) and ef (0) respectively denote the number of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we investigate 3-difference cordial labeling behavior of Tn ʘK1, Tn ʘ2K1, Tn ʘK2, A(Tn)ʘK1, A(Tn)ʘ 2K1, A(Tn) ʘ K2.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.1 20192019-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100083en10.4067/S0716-09172019000100083
institution Scielo Chile
collection Scielo Chile
language English
topic Cycle
path
triangular snake
quadrilateral snake
difference cordial
spellingShingle Cycle
path
triangular snake
quadrilateral snake
difference cordial
Ponraj,R.
Adaickalam,M. Maria
Kala,R.
3-difference cordiality of some corona graphs
description Abstract Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map where k is an integer 2 ≤ k ≤ p. For each edge uv, assign the label |f (u) − f (v)|. f is called k-difference cordial labeling of G if |vf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the umber of vertices labelled with x, ef (1) and ef (0) respectively denote the number of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we investigate 3-difference cordial labeling behavior of Tn ʘK1, Tn ʘ2K1, Tn ʘK2, A(Tn)ʘK1, A(Tn)ʘ 2K1, A(Tn) ʘ K2.
author Ponraj,R.
Adaickalam,M. Maria
Kala,R.
author_facet Ponraj,R.
Adaickalam,M. Maria
Kala,R.
author_sort Ponraj,R.
title 3-difference cordiality of some corona graphs
title_short 3-difference cordiality of some corona graphs
title_full 3-difference cordiality of some corona graphs
title_fullStr 3-difference cordiality of some corona graphs
title_full_unstemmed 3-difference cordiality of some corona graphs
title_sort 3-difference cordiality of some corona graphs
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100083
work_keys_str_mv AT ponrajr 3differencecordialityofsomecoronagraphs
AT adaickalammmaria 3differencecordialityofsomecoronagraphs
AT kalar 3differencecordialityofsomecoronagraphs
_version_ 1718439843913007104