3-difference cordiality of some corona graphs
Abstract Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map where k is an integer 2 ≤ k ≤ p. For each edge uv, assign the label |f (u) − f (v)|. f is called k-difference cordial labeling of G if |vf (i) − vf (j)| ≤ 1 and |e...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100083 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172019000100083 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720190001000832019-02-083-difference cordiality of some corona graphsPonraj,R.Adaickalam,M. MariaKala,R. Cycle path triangular snake quadrilateral snake difference cordial Abstract Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map where k is an integer 2 ≤ k ≤ p. For each edge uv, assign the label |f (u) − f (v)|. f is called k-difference cordial labeling of G if |vf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the umber of vertices labelled with x, ef (1) and ef (0) respectively denote the number of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we investigate 3-difference cordial labeling behavior of Tn ʘK1, Tn ʘ2K1, Tn ʘK2, A(Tn)ʘK1, A(Tn)ʘ 2K1, A(Tn) ʘ K2.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.1 20192019-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100083en10.4067/S0716-09172019000100083 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Cycle path triangular snake quadrilateral snake difference cordial |
spellingShingle |
Cycle path triangular snake quadrilateral snake difference cordial Ponraj,R. Adaickalam,M. Maria Kala,R. 3-difference cordiality of some corona graphs |
description |
Abstract Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map where k is an integer 2 ≤ k ≤ p. For each edge uv, assign the label |f (u) − f (v)|. f is called k-difference cordial labeling of G if |vf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the umber of vertices labelled with x, ef (1) and ef (0) respectively denote the number of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we investigate 3-difference cordial labeling behavior of Tn ʘK1, Tn ʘ2K1, Tn ʘK2, A(Tn)ʘK1, A(Tn)ʘ 2K1, A(Tn) ʘ K2. |
author |
Ponraj,R. Adaickalam,M. Maria Kala,R. |
author_facet |
Ponraj,R. Adaickalam,M. Maria Kala,R. |
author_sort |
Ponraj,R. |
title |
3-difference cordiality of some corona graphs |
title_short |
3-difference cordiality of some corona graphs |
title_full |
3-difference cordiality of some corona graphs |
title_fullStr |
3-difference cordiality of some corona graphs |
title_full_unstemmed |
3-difference cordiality of some corona graphs |
title_sort |
3-difference cordiality of some corona graphs |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100083 |
work_keys_str_mv |
AT ponrajr 3differencecordialityofsomecoronagraphs AT adaickalammmaria 3differencecordialityofsomecoronagraphs AT kalar 3differencecordialityofsomecoronagraphs |
_version_ |
1718439843913007104 |