Nonlinear maps preserving certain subspaces
Abstract Let X be a Banach space and let B(X) be the Banach algebra of all bounded linear operators on X. We characterise surjective (not necessarily linear or additive) maps ϕ : B(X) → B(X) such that F(ϕ (A)◇ ϕ (B)) = F(A ◇ B) for all A,B &am...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100163 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172019000100163 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720190001001632019-02-08Nonlinear maps preserving certain subspacesBenbouziane,H.Bouramdane,Y.Kettani,M. Ech-Chérif El Kernel operator Nonlinear preservers problema Range operator Abstract Let X be a Banach space and let B(X) be the Banach algebra of all bounded linear operators on X. We characterise surjective (not necessarily linear or additive) maps ϕ : B(X) → B(X) such that F(ϕ (A)◇ ϕ (B)) = F(A ◇ B) for all A,B ∈ B(X) where F(A) denotes any of R(A) or N(A), anda ◇ B denotes any binary operations A−B, AB and ABA for all A,B ∈B(X).info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.1 20192019-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100163en10.4067/S0716-09172019000100163 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Kernel operator Nonlinear preservers problema Range operator |
spellingShingle |
Kernel operator Nonlinear preservers problema Range operator Benbouziane,H. Bouramdane,Y. Kettani,M. Ech-Chérif El Nonlinear maps preserving certain subspaces |
description |
Abstract Let X be a Banach space and let B(X) be the Banach algebra of all bounded linear operators on X. We characterise surjective (not necessarily linear or additive) maps ϕ : B(X) → B(X) such that F(ϕ (A)◇ ϕ (B)) = F(A ◇ B) for all A,B ∈ B(X) where F(A) denotes any of R(A) or N(A), anda ◇ B denotes any binary operations A−B, AB and ABA for all A,B ∈B(X). |
author |
Benbouziane,H. Bouramdane,Y. Kettani,M. Ech-Chérif El |
author_facet |
Benbouziane,H. Bouramdane,Y. Kettani,M. Ech-Chérif El |
author_sort |
Benbouziane,H. |
title |
Nonlinear maps preserving certain subspaces |
title_short |
Nonlinear maps preserving certain subspaces |
title_full |
Nonlinear maps preserving certain subspaces |
title_fullStr |
Nonlinear maps preserving certain subspaces |
title_full_unstemmed |
Nonlinear maps preserving certain subspaces |
title_sort |
nonlinear maps preserving certain subspaces |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100163 |
work_keys_str_mv |
AT benbouzianeh nonlinearmapspreservingcertainsubspaces AT bouramdaney nonlinearmapspreservingcertainsubspaces AT kettanimechcherifel nonlinearmapspreservingcertainsubspaces |
_version_ |
1718439845927321600 |