Nonlinear maps preserving certain subspaces

Abstract Let X be a Banach space and let B(X) be the Banach algebra of all bounded linear operators on X. We characterise surjective (not necessarily linear or additive) maps ϕ : B(X) → B(X) such that F(ϕ (A)◇ ϕ (B)) = F(A ◇ B) for all A,B &am...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Benbouziane,H., Bouramdane,Y., Kettani,M. Ech-Chérif El
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100163
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172019000100163
record_format dspace
spelling oai:scielo:S0716-091720190001001632019-02-08Nonlinear maps preserving certain subspacesBenbouziane,H.Bouramdane,Y.Kettani,M. Ech-Chérif El Kernel operator Nonlinear preservers problema Range operator Abstract Let X be a Banach space and let B(X) be the Banach algebra of all bounded linear operators on X. We characterise surjective (not necessarily linear or additive) maps ϕ : B(X) → B(X) such that F(ϕ (A)◇ ϕ (B)) = F(A ◇ B) for all A,B ∈ B(X) where F(A) denotes any of R(A) or N(A), anda ◇ B denotes any binary operations A−B, AB and ABA for all A,B ∈B(X).info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.1 20192019-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100163en10.4067/S0716-09172019000100163
institution Scielo Chile
collection Scielo Chile
language English
topic Kernel operator
Nonlinear preservers problema
Range operator
spellingShingle Kernel operator
Nonlinear preservers problema
Range operator
Benbouziane,H.
Bouramdane,Y.
Kettani,M. Ech-Chérif El
Nonlinear maps preserving certain subspaces
description Abstract Let X be a Banach space and let B(X) be the Banach algebra of all bounded linear operators on X. We characterise surjective (not necessarily linear or additive) maps ϕ : B(X) → B(X) such that F(ϕ (A)◇ ϕ (B)) = F(A ◇ B) for all A,B ∈ B(X) where F(A) denotes any of R(A) or N(A), anda ◇ B denotes any binary operations A−B, AB and ABA for all A,B ∈B(X).
author Benbouziane,H.
Bouramdane,Y.
Kettani,M. Ech-Chérif El
author_facet Benbouziane,H.
Bouramdane,Y.
Kettani,M. Ech-Chérif El
author_sort Benbouziane,H.
title Nonlinear maps preserving certain subspaces
title_short Nonlinear maps preserving certain subspaces
title_full Nonlinear maps preserving certain subspaces
title_fullStr Nonlinear maps preserving certain subspaces
title_full_unstemmed Nonlinear maps preserving certain subspaces
title_sort nonlinear maps preserving certain subspaces
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100163
work_keys_str_mv AT benbouzianeh nonlinearmapspreservingcertainsubspaces
AT bouramdaney nonlinearmapspreservingcertainsubspaces
AT kettanimechcherifel nonlinearmapspreservingcertainsubspaces
_version_ 1718439845927321600