Even vertex equitable even labeling for snake related graphs

Abstract Let G be a graph with p vertices and q edges and A = {0,2,4,···, q+1} if q is odd or A = {0,2,4,···,q} if q is even. A graph G is said to be an even vertex equitable even labeling if there exists a vertex labeling f : V (G) → A that induces an edge labeling f∗ de&#64...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lourdusamy,A., Wency,S. Jenifer, Patrick,F.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000100177
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Let G be a graph with p vertices and q edges and A = {0,2,4,···, q+1} if q is odd or A = {0,2,4,···,q} if q is even. A graph G is said to be an even vertex equitable even labeling if there exists a vertex labeling f : V (G) → A that induces an edge labeling f∗ defined by f∗(uv)=f(u)+f(v) for all edges uv such that for all a and b in A, |vf(a)−vf(b)|≤1 and the induced edge labels are 2,4,···,2q, where vf(a) be the number of vertices v with f(v)=a for a ∈ A. A graph that admits even vertex equitable even labeling is called an even vertex equitable even graph. In this paper, we prove that S(D(Qn)), S(D(Tn)), DA(Qm) ʘ nK1, DA(Tm) ʘ nK1, S(DA(Qn)) and S(DA(Tn)) are an even vertex equitable even graphs.