Further results on 3-product cordial labeling

Abstract A mapping f : V (G) → {0, 1, 2} is called 3-product cordial labeling if |vf(i) − vf(j)| ≤ 1 and |ef(i) − ef(j)| ≤ 1 for any i, j ∈ {0, 1, 2}, where vf(i) denotes the number of vertices labeled with i, ef(i) denotes the number of ed...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeyanthi,P., Maheswari,A., Vijayalakshmi,M.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200191
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract A mapping f : V (G) → {0, 1, 2} is called 3-product cordial labeling if |vf(i) − vf(j)| ≤ 1 and |ef(i) − ef(j)| ≤ 1 for any i, j ∈ {0, 1, 2}, where vf(i) denotes the number of vertices labeled with i, ef(i) denotes the number of edges xy with f(x)f(y) ≡ i(mod 3). A graph with 3-product cordial labeing is called 3-product cordial graph. In this paper we establish that switching of an apex vertex in closed helm, double fan, book graph K1,n × K2 and permutation graph P (K2 + mK1, I) are 3-product cordial graphs.