Total domination and vertex-edge domination in tres

Abstract: A vertex v of a graph G = (V,E) is said to ve-dominate every edge incident to v, as well as every edge adjacent to these incident edges. A set S ⊆ V is a vertex-edge dominating set if every edge of E is ve-dominated by at least one vertex of S. The minimum cardinality of a vertex...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Venkatakrishnan,Y. B., Kumar,H. Naresh, Natarajan,C.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200295
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172019000200295
record_format dspace
spelling oai:scielo:S0716-091720190002002952019-05-30Total domination and vertex-edge domination in tresVenkatakrishnan,Y. B.Kumar,H. NareshNatarajan,C. Vertex-edge dominating set total dominating set trees Abstract: A vertex v of a graph G = (V,E) is said to ve-dominate every edge incident to v, as well as every edge adjacent to these incident edges. A set S ⊆ V is a vertex-edge dominating set if every edge of E is ve-dominated by at least one vertex of S. The minimum cardinality of a vertex-edge dominating set of G is the vertex-edge domination number γve(G) . In this paper we prove (γt(T)−ℓ+1)/2 ≤ γve(T) ≤(γt(T)+ℓ−1)/2 and characterize trees attaining each of these bounds.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.2 20192019-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200295en10.4067/S0716-09172019000200295
institution Scielo Chile
collection Scielo Chile
language English
topic Vertex-edge dominating set
total dominating set
trees
spellingShingle Vertex-edge dominating set
total dominating set
trees
Venkatakrishnan,Y. B.
Kumar,H. Naresh
Natarajan,C.
Total domination and vertex-edge domination in tres
description Abstract: A vertex v of a graph G = (V,E) is said to ve-dominate every edge incident to v, as well as every edge adjacent to these incident edges. A set S ⊆ V is a vertex-edge dominating set if every edge of E is ve-dominated by at least one vertex of S. The minimum cardinality of a vertex-edge dominating set of G is the vertex-edge domination number γve(G) . In this paper we prove (γt(T)−ℓ+1)/2 ≤ γve(T) ≤(γt(T)+ℓ−1)/2 and characterize trees attaining each of these bounds.
author Venkatakrishnan,Y. B.
Kumar,H. Naresh
Natarajan,C.
author_facet Venkatakrishnan,Y. B.
Kumar,H. Naresh
Natarajan,C.
author_sort Venkatakrishnan,Y. B.
title Total domination and vertex-edge domination in tres
title_short Total domination and vertex-edge domination in tres
title_full Total domination and vertex-edge domination in tres
title_fullStr Total domination and vertex-edge domination in tres
title_full_unstemmed Total domination and vertex-edge domination in tres
title_sort total domination and vertex-edge domination in tres
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200295
work_keys_str_mv AT venkatakrishnanyb totaldominationandvertexedgedominationintres
AT kumarhnaresh totaldominationandvertexedgedominationintres
AT natarajanc totaldominationandvertexedgedominationintres
_version_ 1718439848342192128