Total domination and vertex-edge domination in tres
Abstract: A vertex v of a graph G = (V,E) is said to ve-dominate every edge incident to v, as well as every edge adjacent to these incident edges. A set S ⊆ V is a vertex-edge dominating set if every edge of E is ve-dominated by at least one vertex of S. The minimum cardinality of a vertex...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200295 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172019000200295 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720190002002952019-05-30Total domination and vertex-edge domination in tresVenkatakrishnan,Y. B.Kumar,H. NareshNatarajan,C. Vertex-edge dominating set total dominating set trees Abstract: A vertex v of a graph G = (V,E) is said to ve-dominate every edge incident to v, as well as every edge adjacent to these incident edges. A set S ⊆ V is a vertex-edge dominating set if every edge of E is ve-dominated by at least one vertex of S. The minimum cardinality of a vertex-edge dominating set of G is the vertex-edge domination number γve(G) . In this paper we prove (γt(T)−ℓ+1)/2 ≤ γve(T) ≤(γt(T)+ℓ−1)/2 and characterize trees attaining each of these bounds.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.2 20192019-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200295en10.4067/S0716-09172019000200295 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Vertex-edge dominating set total dominating set trees |
spellingShingle |
Vertex-edge dominating set total dominating set trees Venkatakrishnan,Y. B. Kumar,H. Naresh Natarajan,C. Total domination and vertex-edge domination in tres |
description |
Abstract: A vertex v of a graph G = (V,E) is said to ve-dominate every edge incident to v, as well as every edge adjacent to these incident edges. A set S ⊆ V is a vertex-edge dominating set if every edge of E is ve-dominated by at least one vertex of S. The minimum cardinality of a vertex-edge dominating set of G is the vertex-edge domination number γve(G) . In this paper we prove (γt(T)−ℓ+1)/2 ≤ γve(T) ≤(γt(T)+ℓ−1)/2 and characterize trees attaining each of these bounds. |
author |
Venkatakrishnan,Y. B. Kumar,H. Naresh Natarajan,C. |
author_facet |
Venkatakrishnan,Y. B. Kumar,H. Naresh Natarajan,C. |
author_sort |
Venkatakrishnan,Y. B. |
title |
Total domination and vertex-edge domination in tres |
title_short |
Total domination and vertex-edge domination in tres |
title_full |
Total domination and vertex-edge domination in tres |
title_fullStr |
Total domination and vertex-edge domination in tres |
title_full_unstemmed |
Total domination and vertex-edge domination in tres |
title_sort |
total domination and vertex-edge domination in tres |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200295 |
work_keys_str_mv |
AT venkatakrishnanyb totaldominationandvertexedgedominationintres AT kumarhnaresh totaldominationandvertexedgedominationintres AT natarajanc totaldominationandvertexedgedominationintres |
_version_ |
1718439848342192128 |