On the uniform ergodic theorem in invariant subspaces

Abstract: Let T be a bounded linear operator on a Banach space X into itself. In this paper, we study the uniform ergodicity of the operator T|Y when Y is a closed subspace invariant under T. We show that if T satisfies , then T is uniformly ergodic on X if and only if the restriction of T to some...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tajmouati,Abdelaziz, Bakkali,Abdeslam El, Fatih,Barki
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200315
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172019000200315
record_format dspace
spelling oai:scielo:S0716-091720190002003152019-05-30On the uniform ergodic theorem in invariant subspacesTajmouati,AbdelazizBakkali,Abdeslam ElFatih,Barki Uniform ergodic theorem Cesàro averages decomposition ergodic. Abstract: Let T be a bounded linear operator on a Banach space X into itself. In this paper, we study the uniform ergodicity of the operator T|Y when Y is a closed subspace invariant under T. We show that if T satisfies , then T is uniformly ergodic on X if and only if the restriction of T to some closed subspace Y ⊂ X, invariant under T and R[(I − T)k] ⊂ Y for some integer k ≥ 1, is uniformly ergodic. Consequently, we obtain other equivalent conditions concerning the theorem of Mbekhta and Zemànek ((9), theorem 1), also to the theorem of the Gelfand-Hille type.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.2 20192019-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200315en10.4067/S0716-09172019000200315
institution Scielo Chile
collection Scielo Chile
language English
topic Uniform ergodic theorem
Cesàro averages
decomposition ergodic.
spellingShingle Uniform ergodic theorem
Cesàro averages
decomposition ergodic.
Tajmouati,Abdelaziz
Bakkali,Abdeslam El
Fatih,Barki
On the uniform ergodic theorem in invariant subspaces
description Abstract: Let T be a bounded linear operator on a Banach space X into itself. In this paper, we study the uniform ergodicity of the operator T|Y when Y is a closed subspace invariant under T. We show that if T satisfies , then T is uniformly ergodic on X if and only if the restriction of T to some closed subspace Y ⊂ X, invariant under T and R[(I − T)k] ⊂ Y for some integer k ≥ 1, is uniformly ergodic. Consequently, we obtain other equivalent conditions concerning the theorem of Mbekhta and Zemànek ((9), theorem 1), also to the theorem of the Gelfand-Hille type.
author Tajmouati,Abdelaziz
Bakkali,Abdeslam El
Fatih,Barki
author_facet Tajmouati,Abdelaziz
Bakkali,Abdeslam El
Fatih,Barki
author_sort Tajmouati,Abdelaziz
title On the uniform ergodic theorem in invariant subspaces
title_short On the uniform ergodic theorem in invariant subspaces
title_full On the uniform ergodic theorem in invariant subspaces
title_fullStr On the uniform ergodic theorem in invariant subspaces
title_full_unstemmed On the uniform ergodic theorem in invariant subspaces
title_sort on the uniform ergodic theorem in invariant subspaces
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200315
work_keys_str_mv AT tajmouatiabdelaziz ontheuniformergodictheoremininvariantsubspaces
AT bakkaliabdeslamel ontheuniformergodictheoremininvariantsubspaces
AT fatihbarki ontheuniformergodictheoremininvariantsubspaces
_version_ 1718439848833974272