On the uniform ergodic theorem in invariant subspaces
Abstract: Let T be a bounded linear operator on a Banach space X into itself. In this paper, we study the uniform ergodicity of the operator T|Y when Y is a closed subspace invariant under T. We show that if T satisfies , then T is uniformly ergodic on X if and only if the restriction of T to some...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200315 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172019000200315 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720190002003152019-05-30On the uniform ergodic theorem in invariant subspacesTajmouati,AbdelazizBakkali,Abdeslam ElFatih,Barki Uniform ergodic theorem Cesàro averages decomposition ergodic. Abstract: Let T be a bounded linear operator on a Banach space X into itself. In this paper, we study the uniform ergodicity of the operator T|Y when Y is a closed subspace invariant under T. We show that if T satisfies , then T is uniformly ergodic on X if and only if the restriction of T to some closed subspace Y ⊂ X, invariant under T and R[(I − T)k] ⊂ Y for some integer k ≥ 1, is uniformly ergodic. Consequently, we obtain other equivalent conditions concerning the theorem of Mbekhta and Zemànek ((9), theorem 1), also to the theorem of the Gelfand-Hille type.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.2 20192019-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200315en10.4067/S0716-09172019000200315 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Uniform ergodic theorem Cesàro averages decomposition ergodic. |
spellingShingle |
Uniform ergodic theorem Cesàro averages decomposition ergodic. Tajmouati,Abdelaziz Bakkali,Abdeslam El Fatih,Barki On the uniform ergodic theorem in invariant subspaces |
description |
Abstract: Let T be a bounded linear operator on a Banach space X into itself. In this paper, we study the uniform ergodicity of the operator T|Y when Y is a closed subspace invariant under T. We show that if T satisfies , then T is uniformly ergodic on X if and only if the restriction of T to some closed subspace Y ⊂ X, invariant under T and R[(I − T)k] ⊂ Y for some integer k ≥ 1, is uniformly ergodic. Consequently, we obtain other equivalent conditions concerning the theorem of Mbekhta and Zemànek ((9), theorem 1), also to the theorem of the Gelfand-Hille type. |
author |
Tajmouati,Abdelaziz Bakkali,Abdeslam El Fatih,Barki |
author_facet |
Tajmouati,Abdelaziz Bakkali,Abdeslam El Fatih,Barki |
author_sort |
Tajmouati,Abdelaziz |
title |
On the uniform ergodic theorem in invariant subspaces |
title_short |
On the uniform ergodic theorem in invariant subspaces |
title_full |
On the uniform ergodic theorem in invariant subspaces |
title_fullStr |
On the uniform ergodic theorem in invariant subspaces |
title_full_unstemmed |
On the uniform ergodic theorem in invariant subspaces |
title_sort |
on the uniform ergodic theorem in invariant subspaces |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200315 |
work_keys_str_mv |
AT tajmouatiabdelaziz ontheuniformergodictheoremininvariantsubspaces AT bakkaliabdeslamel ontheuniformergodictheoremininvariantsubspaces AT fatihbarki ontheuniformergodictheoremininvariantsubspaces |
_version_ |
1718439848833974272 |