Nonlinear elliptic equations in dimension two with potentials which can vanish at infinity

Abstract: We will focus on the existence of nontrivial solutions to the following nonlinear elliptic equation −∆u + V (x)u = f(u), x ∈ R2, where V is a nonnegative function which can vanish at infinity or be unbounded from above, and f have exponential growth range. The...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Santaria Leuyacc,Yony Raúl
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200325
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172019000200325
record_format dspace
spelling oai:scielo:S0716-091720190002003252019-05-30Nonlinear elliptic equations in dimension two with potentials which can vanish at infinitySantaria Leuyacc,Yony Raúl Nonlinear elliptic equations vanishing potentials Trudinger-Moser inequality. Abstract: We will focus on the existence of nontrivial solutions to the following nonlinear elliptic equation −∆u + V (x)u = f(u), x ∈ R2, where V is a nonnegative function which can vanish at infinity or be unbounded from above, and f have exponential growth range. The proof involves a truncation argument combined with Mountain Pass Theorem and a Trudinger-Moser type inequality.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.2 20192019-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200325en10.4067/S0716-09172019000200325
institution Scielo Chile
collection Scielo Chile
language English
topic Nonlinear elliptic equations
vanishing potentials
Trudinger-Moser inequality.
spellingShingle Nonlinear elliptic equations
vanishing potentials
Trudinger-Moser inequality.
Santaria Leuyacc,Yony Raúl
Nonlinear elliptic equations in dimension two with potentials which can vanish at infinity
description Abstract: We will focus on the existence of nontrivial solutions to the following nonlinear elliptic equation −∆u + V (x)u = f(u), x ∈ R2, where V is a nonnegative function which can vanish at infinity or be unbounded from above, and f have exponential growth range. The proof involves a truncation argument combined with Mountain Pass Theorem and a Trudinger-Moser type inequality.
author Santaria Leuyacc,Yony Raúl
author_facet Santaria Leuyacc,Yony Raúl
author_sort Santaria Leuyacc,Yony Raúl
title Nonlinear elliptic equations in dimension two with potentials which can vanish at infinity
title_short Nonlinear elliptic equations in dimension two with potentials which can vanish at infinity
title_full Nonlinear elliptic equations in dimension two with potentials which can vanish at infinity
title_fullStr Nonlinear elliptic equations in dimension two with potentials which can vanish at infinity
title_full_unstemmed Nonlinear elliptic equations in dimension two with potentials which can vanish at infinity
title_sort nonlinear elliptic equations in dimension two with potentials which can vanish at infinity
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000200325
work_keys_str_mv AT santarialeuyaccyonyraul nonlinearellipticequationsindimensiontwowithpotentialswhichcanvanishatinfinity
_version_ 1718439849168470016