Odd harmonious labeling of grid graphs

Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function f* : E(G) → {1, 3, · · · , 2q − 1} defined by f∗ (uv) = f (u) + f (v) is a bijection. In this pa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeyanthi,P., Philo,S., Youssef,Maged Z.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300411
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172019000300411
record_format dspace
spelling oai:scielo:S0716-091720190003004112019-08-28Odd harmonious labeling of grid graphsJeyanthi,P.Philo,S.Youssef,Maged Z. Harmonious labeling Odd harmonious labeling Grid graph Path union of graphs One point union of path of graphs t-super subdivision of graphs 05C78 Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function f* : E(G) → {1, 3, · · · , 2q − 1} defined by f∗ (uv) = f (u) + f (v) is a bijection. In this paper we prove that path union of t copies of Pm×Pn, path union of t different copies of Pmᵢ×Pnᵢ where 1 ≤ i ≤ t, vertex union of t copies of Pm×Pn, vertex union of t different copies of Pmᵢ×Pnᵢ where 1 ≤ i ≤ t, one point union of path of Ptn (t.n.Pm×Pm), t super subdivision of grid graph Pm×Pn are odd harmonious graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.3 20192019-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300411en10.22199/issn.0717-6279-2019-03-0027
institution Scielo Chile
collection Scielo Chile
language English
topic Harmonious labeling
Odd harmonious labeling
Grid graph
Path union of graphs
One point union of path of graphs
t-super subdivision of graphs
05C78
spellingShingle Harmonious labeling
Odd harmonious labeling
Grid graph
Path union of graphs
One point union of path of graphs
t-super subdivision of graphs
05C78
Jeyanthi,P.
Philo,S.
Youssef,Maged Z.
Odd harmonious labeling of grid graphs
description Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function f* : E(G) → {1, 3, · · · , 2q − 1} defined by f∗ (uv) = f (u) + f (v) is a bijection. In this paper we prove that path union of t copies of Pm×Pn, path union of t different copies of Pmᵢ×Pnᵢ where 1 ≤ i ≤ t, vertex union of t copies of Pm×Pn, vertex union of t different copies of Pmᵢ×Pnᵢ where 1 ≤ i ≤ t, one point union of path of Ptn (t.n.Pm×Pm), t super subdivision of grid graph Pm×Pn are odd harmonious graphs.
author Jeyanthi,P.
Philo,S.
Youssef,Maged Z.
author_facet Jeyanthi,P.
Philo,S.
Youssef,Maged Z.
author_sort Jeyanthi,P.
title Odd harmonious labeling of grid graphs
title_short Odd harmonious labeling of grid graphs
title_full Odd harmonious labeling of grid graphs
title_fullStr Odd harmonious labeling of grid graphs
title_full_unstemmed Odd harmonious labeling of grid graphs
title_sort odd harmonious labeling of grid graphs
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300411
work_keys_str_mv AT jeyanthip oddharmoniouslabelingofgridgraphs
AT philos oddharmoniouslabelingofgridgraphs
AT youssefmagedz oddharmoniouslabelingofgridgraphs
_version_ 1718439850454024192