Odd harmonious labeling of grid graphs
Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function f* : E(G) → {1, 3, · · · , 2q − 1} defined by f∗ (uv) = f (u) + f (v) is a bijection. In this pa...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300411 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172019000300411 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720190003004112019-08-28Odd harmonious labeling of grid graphsJeyanthi,P.Philo,S.Youssef,Maged Z. Harmonious labeling Odd harmonious labeling Grid graph Path union of graphs One point union of path of graphs t-super subdivision of graphs 05C78 Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function f* : E(G) → {1, 3, · · · , 2q − 1} defined by f∗ (uv) = f (u) + f (v) is a bijection. In this paper we prove that path union of t copies of Pm×Pn, path union of t different copies of Pmᵢ×Pnᵢ where 1 ≤ i ≤ t, vertex union of t copies of Pm×Pn, vertex union of t different copies of Pmᵢ×Pnᵢ where 1 ≤ i ≤ t, one point union of path of Ptn (t.n.Pm×Pm), t super subdivision of grid graph Pm×Pn are odd harmonious graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.3 20192019-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300411en10.22199/issn.0717-6279-2019-03-0027 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Harmonious labeling Odd harmonious labeling Grid graph Path union of graphs One point union of path of graphs t-super subdivision of graphs 05C78 |
spellingShingle |
Harmonious labeling Odd harmonious labeling Grid graph Path union of graphs One point union of path of graphs t-super subdivision of graphs 05C78 Jeyanthi,P. Philo,S. Youssef,Maged Z. Odd harmonious labeling of grid graphs |
description |
Abstract A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function f* : E(G) → {1, 3, · · · , 2q − 1} defined by f∗ (uv) = f (u) + f (v) is a bijection. In this paper we prove that path union of t copies of Pm×Pn, path union of t different copies of Pmᵢ×Pnᵢ where 1 ≤ i ≤ t, vertex union of t copies of Pm×Pn, vertex union of t different copies of Pmᵢ×Pnᵢ where 1 ≤ i ≤ t, one point union of path of Ptn (t.n.Pm×Pm), t super subdivision of grid graph Pm×Pn are odd harmonious graphs. |
author |
Jeyanthi,P. Philo,S. Youssef,Maged Z. |
author_facet |
Jeyanthi,P. Philo,S. Youssef,Maged Z. |
author_sort |
Jeyanthi,P. |
title |
Odd harmonious labeling of grid graphs |
title_short |
Odd harmonious labeling of grid graphs |
title_full |
Odd harmonious labeling of grid graphs |
title_fullStr |
Odd harmonious labeling of grid graphs |
title_full_unstemmed |
Odd harmonious labeling of grid graphs |
title_sort |
odd harmonious labeling of grid graphs |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300411 |
work_keys_str_mv |
AT jeyanthip oddharmoniouslabelingofgridgraphs AT philos oddharmoniouslabelingofgridgraphs AT youssefmagedz oddharmoniouslabelingofgridgraphs |
_version_ |
1718439850454024192 |