On a new class of generalized difference sequence spaces of fractional order defined by modulus function

Abstract Recently Baliarsingh and Dutta [11], [12] introduced the fractional difference operator Δα , defined by Δα(xk) = and defined new classes of generalized difference sequence spaces of fractional order X(Γ, Δα, u) where X = {&a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Yaying,Taja
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300485
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Recently Baliarsingh and Dutta [11], [12] introduced the fractional difference operator Δα , defined by Δα(xk) = and defined new classes of generalized difference sequence spaces of fractional order X(Γ, Δα, u) where X = {𝓁∞, c, c0} . More recently, Kadak [21] studied strongly Cesàro and statistical difference sequence space of fractional order involving lacunary sequences using the fractional difference operator is is any fixed sequence of positive real or complex numbers. Following Baliarsingh and Dutta [11], [12] and Kadak [21], we introduce paranormed difference sequence spaces of fractional order involving lacunary sequence, θ and modulus function, f. We investigate topological structures of these spaces and examine various inclusion relations.