Radius problem for the class of analytic functions based on Ruscheweyh derivative

Abstract Let 𝒜 be the class of analytic functions f (z) with the normalized condition f(0) = f 0(0)−1 = 0 in the open unit disk U. Bymaking use of Ruscheweyh derivative operator, a new subclass 𝒜(β1, β2, β3, β4; λ) of f(z...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohapatra,S. K., Panigrahi,T.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300537
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Let 𝒜 be the class of analytic functions f (z) with the normalized condition f(0) = f 0(0)−1 = 0 in the open unit disk U. Bymaking use of Ruscheweyh derivative operator, a new subclass 𝒜(β1, β2, β3, β4; λ) of f(z) ∈ 𝒜 satisfying the inequality for some complex numbers β1, β2, β3, β4 and for some real λ > 0 is introduced. The object of the present paper is to obtain some properties of the function class 𝒜 (β1, β2, β3, β4; λ). Also the radius problems of satisfies the condition is considered.