Radius problem for the class of analytic functions based on Ruscheweyh derivative

Abstract Let 𝒜 be the class of analytic functions f (z) with the normalized condition f(0) = f 0(0)−1 = 0 in the open unit disk U. Bymaking use of Ruscheweyh derivative operator, a new subclass 𝒜(β1, β2, β3, β4; λ) of f(z...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohapatra,S. K., Panigrahi,T.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300537
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172019000300537
record_format dspace
spelling oai:scielo:S0716-091720190003005372019-08-28Radius problem for the class of analytic functions based on Ruscheweyh derivativeMohapatra,S. K.Panigrahi,T. Analytic function Univalent function Ruscheweyh derivative Cauchy-Schwarz inequality Radius problema Hölder inequality 30C45 30C50 Abstract Let 𝒜 be the class of analytic functions f (z) with the normalized condition f(0) = f 0(0)−1 = 0 in the open unit disk U. Bymaking use of Ruscheweyh derivative operator, a new subclass 𝒜(β1, β2, β3, β4; λ) of f(z) ∈ 𝒜 satisfying the inequality for some complex numbers β1, β2, β3, β4 and for some real λ > 0 is introduced. The object of the present paper is to obtain some properties of the function class 𝒜 (β1, β2, β3, β4; λ). Also the radius problems of satisfies the condition is considered.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.3 20192019-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300537en10.22199/issn.0717-6279-2019-03-0034
institution Scielo Chile
collection Scielo Chile
language English
topic Analytic function
Univalent function
Ruscheweyh derivative
Cauchy-Schwarz inequality
Radius problema
Hölder inequality
30C45
30C50
spellingShingle Analytic function
Univalent function
Ruscheweyh derivative
Cauchy-Schwarz inequality
Radius problema
Hölder inequality
30C45
30C50
Mohapatra,S. K.
Panigrahi,T.
Radius problem for the class of analytic functions based on Ruscheweyh derivative
description Abstract Let 𝒜 be the class of analytic functions f (z) with the normalized condition f(0) = f 0(0)−1 = 0 in the open unit disk U. Bymaking use of Ruscheweyh derivative operator, a new subclass 𝒜(β1, β2, β3, β4; λ) of f(z) ∈ 𝒜 satisfying the inequality for some complex numbers β1, β2, β3, β4 and for some real λ > 0 is introduced. The object of the present paper is to obtain some properties of the function class 𝒜 (β1, β2, β3, β4; λ). Also the radius problems of satisfies the condition is considered.
author Mohapatra,S. K.
Panigrahi,T.
author_facet Mohapatra,S. K.
Panigrahi,T.
author_sort Mohapatra,S. K.
title Radius problem for the class of analytic functions based on Ruscheweyh derivative
title_short Radius problem for the class of analytic functions based on Ruscheweyh derivative
title_full Radius problem for the class of analytic functions based on Ruscheweyh derivative
title_fullStr Radius problem for the class of analytic functions based on Ruscheweyh derivative
title_full_unstemmed Radius problem for the class of analytic functions based on Ruscheweyh derivative
title_sort radius problem for the class of analytic functions based on ruscheweyh derivative
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300537
work_keys_str_mv AT mohapatrask radiusproblemfortheclassofanalyticfunctionsbasedonruscheweyhderivative
AT panigrahit radiusproblemfortheclassofanalyticfunctionsbasedonruscheweyhderivative
_version_ 1718439852515524608