Radius problem for the class of analytic functions based on Ruscheweyh derivative
Abstract Let 𝒜 be the class of analytic functions f (z) with the normalized condition f(0) = f 0(0)−1 = 0 in the open unit disk U. Bymaking use of Ruscheweyh derivative operator, a new subclass 𝒜(β1, β2, β3, β4; λ) of f(z...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300537 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172019000300537 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720190003005372019-08-28Radius problem for the class of analytic functions based on Ruscheweyh derivativeMohapatra,S. K.Panigrahi,T. Analytic function Univalent function Ruscheweyh derivative Cauchy-Schwarz inequality Radius problema Hölder inequality 30C45 30C50 Abstract Let 𝒜 be the class of analytic functions f (z) with the normalized condition f(0) = f 0(0)−1 = 0 in the open unit disk U. Bymaking use of Ruscheweyh derivative operator, a new subclass 𝒜(β1, β2, β3, β4; λ) of f(z) ∈ 𝒜 satisfying the inequality for some complex numbers β1, β2, β3, β4 and for some real λ > 0 is introduced. The object of the present paper is to obtain some properties of the function class 𝒜 (β1, β2, β3, β4; λ). Also the radius problems of satisfies the condition is considered.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.3 20192019-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300537en10.22199/issn.0717-6279-2019-03-0034 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Analytic function Univalent function Ruscheweyh derivative Cauchy-Schwarz inequality Radius problema Hölder inequality 30C45 30C50 |
spellingShingle |
Analytic function Univalent function Ruscheweyh derivative Cauchy-Schwarz inequality Radius problema Hölder inequality 30C45 30C50 Mohapatra,S. K. Panigrahi,T. Radius problem for the class of analytic functions based on Ruscheweyh derivative |
description |
Abstract Let 𝒜 be the class of analytic functions f (z) with the normalized condition f(0) = f 0(0)−1 = 0 in the open unit disk U. Bymaking use of Ruscheweyh derivative operator, a new subclass 𝒜(β1, β2, β3, β4; λ) of f(z) ∈ 𝒜 satisfying the inequality for some complex numbers β1, β2, β3, β4 and for some real λ > 0 is introduced. The object of the present paper is to obtain some properties of the function class 𝒜 (β1, β2, β3, β4; λ). Also the radius problems of satisfies the condition is considered. |
author |
Mohapatra,S. K. Panigrahi,T. |
author_facet |
Mohapatra,S. K. Panigrahi,T. |
author_sort |
Mohapatra,S. K. |
title |
Radius problem for the class of analytic functions based on Ruscheweyh derivative |
title_short |
Radius problem for the class of analytic functions based on Ruscheweyh derivative |
title_full |
Radius problem for the class of analytic functions based on Ruscheweyh derivative |
title_fullStr |
Radius problem for the class of analytic functions based on Ruscheweyh derivative |
title_full_unstemmed |
Radius problem for the class of analytic functions based on Ruscheweyh derivative |
title_sort |
radius problem for the class of analytic functions based on ruscheweyh derivative |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300537 |
work_keys_str_mv |
AT mohapatrask radiusproblemfortheclassofanalyticfunctionsbasedonruscheweyhderivative AT panigrahit radiusproblemfortheclassofanalyticfunctionsbasedonruscheweyhderivative |
_version_ |
1718439852515524608 |