Hyers-Ulam stability of n th order linear differential equation
Abstract In this paper, we investigate the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the homogeneous linear differential equation of nth order with initial and boundary conditions by using Taylor’s Series formula.
Enregistré dans:
| Auteurs principaux: | Murali,R., Selvan,A. Ponmana |
|---|---|
| Langue: | English |
| Publié: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
| Sujets: | |
| Accès en ligne: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300553 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Semi-Hyers–Ulam–Rassias Stability of the Convection Partial Differential Equation via Laplace Transform
par: Daniela Marian
Publié: (2021) -
New Sufficient Conditions to Ulam Stabilities for a Class of Higher Order Integro-Differential Equations
par: Alberto M. Simões, et autres
Publié: (2021) -
Hyers-Ulam stability of isometries on bounded domains
par: Jung Soon-Mo
Publié: (2021) -
GENERALIZED ULAM-HYERS STABILITIES OF QUARTIC DERIVATIONS ON BANACH ALGEBRAS
par: Eshaghi Gordji,M, et autres
Publié: (2010) -
Semi-Hyers–Ulam–Rassias Stability of a Volterra Integro-Differential Equation of Order I with a Convolution Type Kernel via Laplace Transform
par: Daniela Inoan, et autres
Publié: (2021)