Hyers-Ulam stability of n th order linear differential equation
Abstract In this paper, we investigate the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the homogeneous linear differential equation of nth order with initial and boundary conditions by using Taylor’s Series formula.
Guardado en:
Autores principales: | Murali,R., Selvan,A. Ponmana |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000300553 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Semi-Hyers–Ulam–Rassias Stability of the Convection Partial Differential Equation via Laplace Transform
por: Daniela Marian
Publicado: (2021) -
New Sufficient Conditions to Ulam Stabilities for a Class of Higher Order Integro-Differential Equations
por: Alberto M. Simões, et al.
Publicado: (2021) -
Hyers-Ulam stability of isometries on bounded domains
por: Jung Soon-Mo
Publicado: (2021) -
GENERALIZED ULAM-HYERS STABILITIES OF QUARTIC DERIVATIONS ON BANACH ALGEBRAS
por: Eshaghi Gordji,M, et al.
Publicado: (2010) -
Semi-Hyers–Ulam–Rassias Stability of a Volterra Integro-Differential Equation of Order I with a Convolution Type Kernel via Laplace Transform
por: Daniela Inoan, et al.
Publicado: (2021)