Extended results on sum divisor cordial labeling

Abstract A sum divisor cordial labeling of a graph G with vertex set V (G) is a bijection f : V (G) → {1, 2, ..., |V (G)|} such that an edge uv assigned the label 1 if 2 divides f(u)+f(v) and 0 otherwise. Further the number of edges labeled with 0 and the the number of edges labeled with 1...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sugumaran,A., Rajesh,K.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400653
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract A sum divisor cordial labeling of a graph G with vertex set V (G) is a bijection f : V (G) &#8594; {1, 2, ..., |V (G)|} such that an edge uv assigned the label 1 if 2 divides f(u)+f(v) and 0 otherwise. Further the number of edges labeled with 0 and the the number of edges labeled with 1 differ by atmost 1. A graph with sum divisor cordial labeling is called a sum divisor cordial graph. In this paper we prove that the graphs P n + P n (n is odd), P n @K 1,m , Cn@K 1,m (n is odd), W n * K 1,m (n is even), < K&#8321;¹ ,n,n &#8710;K&#8321;²2 ,n,n >, < Fl n ¹&#8710;Fl n ² > are sum divisor cordial graphs.