Extended results on sum divisor cordial labeling

Abstract A sum divisor cordial labeling of a graph G with vertex set V (G) is a bijection f : V (G) → {1, 2, ..., |V (G)|} such that an edge uv assigned the label 1 if 2 divides f(u)+f(v) and 0 otherwise. Further the number of edges labeled with 0 and the the number of edges labeled with 1...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sugumaran,A., Rajesh,K.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400653
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172019000400653
record_format dspace
spelling oai:scielo:S0716-091720190004006532019-11-04Extended results on sum divisor cordial labelingSugumaran,A.Rajesh,K. Divisor cordial labeling Sum divisor cordial labeling. Abstract A sum divisor cordial labeling of a graph G with vertex set V (G) is a bijection f : V (G) &#8594; {1, 2, ..., |V (G)|} such that an edge uv assigned the label 1 if 2 divides f(u)+f(v) and 0 otherwise. Further the number of edges labeled with 0 and the the number of edges labeled with 1 differ by atmost 1. A graph with sum divisor cordial labeling is called a sum divisor cordial graph. In this paper we prove that the graphs P n + P n (n is odd), P n @K 1,m , Cn@K 1,m (n is odd), W n * K 1,m (n is even), < K&#8321;¹ ,n,n &#8710;K&#8321;²2 ,n,n >, < Fl n ¹&#8710;Fl n ² > are sum divisor cordial graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.4 20192019-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400653en10.22199/issn.0717-6279-2019-04-0042
institution Scielo Chile
collection Scielo Chile
language English
topic Divisor cordial labeling
Sum divisor cordial labeling.
spellingShingle Divisor cordial labeling
Sum divisor cordial labeling.
Sugumaran,A.
Rajesh,K.
Extended results on sum divisor cordial labeling
description Abstract A sum divisor cordial labeling of a graph G with vertex set V (G) is a bijection f : V (G) &#8594; {1, 2, ..., |V (G)|} such that an edge uv assigned the label 1 if 2 divides f(u)+f(v) and 0 otherwise. Further the number of edges labeled with 0 and the the number of edges labeled with 1 differ by atmost 1. A graph with sum divisor cordial labeling is called a sum divisor cordial graph. In this paper we prove that the graphs P n + P n (n is odd), P n @K 1,m , Cn@K 1,m (n is odd), W n * K 1,m (n is even), < K&#8321;¹ ,n,n &#8710;K&#8321;²2 ,n,n >, < Fl n ¹&#8710;Fl n ² > are sum divisor cordial graphs.
author Sugumaran,A.
Rajesh,K.
author_facet Sugumaran,A.
Rajesh,K.
author_sort Sugumaran,A.
title Extended results on sum divisor cordial labeling
title_short Extended results on sum divisor cordial labeling
title_full Extended results on sum divisor cordial labeling
title_fullStr Extended results on sum divisor cordial labeling
title_full_unstemmed Extended results on sum divisor cordial labeling
title_sort extended results on sum divisor cordial labeling
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400653
work_keys_str_mv AT sugumarana extendedresultsonsumdivisorcordiallabeling
AT rajeshk extendedresultsonsumdivisorcordiallabeling
_version_ 1718439854643085312