Extended results on sum divisor cordial labeling
Abstract A sum divisor cordial labeling of a graph G with vertex set V (G) is a bijection f : V (G) → {1, 2, ..., |V (G)|} such that an edge uv assigned the label 1 if 2 divides f(u)+f(v) and 0 otherwise. Further the number of edges labeled with 0 and the the number of edges labeled with 1...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400653 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172019000400653 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720190004006532019-11-04Extended results on sum divisor cordial labelingSugumaran,A.Rajesh,K. Divisor cordial labeling Sum divisor cordial labeling. Abstract A sum divisor cordial labeling of a graph G with vertex set V (G) is a bijection f : V (G) → {1, 2, ..., |V (G)|} such that an edge uv assigned the label 1 if 2 divides f(u)+f(v) and 0 otherwise. Further the number of edges labeled with 0 and the the number of edges labeled with 1 differ by atmost 1. A graph with sum divisor cordial labeling is called a sum divisor cordial graph. In this paper we prove that the graphs P n + P n (n is odd), P n @K 1,m , Cn@K 1,m (n is odd), W n * K 1,m (n is even), < K₁¹ ,n,n ∆K₁²2 ,n,n >, < Fl n ¹∆Fl n ² > are sum divisor cordial graphs.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.4 20192019-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400653en10.22199/issn.0717-6279-2019-04-0042 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Divisor cordial labeling Sum divisor cordial labeling. |
spellingShingle |
Divisor cordial labeling Sum divisor cordial labeling. Sugumaran,A. Rajesh,K. Extended results on sum divisor cordial labeling |
description |
Abstract A sum divisor cordial labeling of a graph G with vertex set V (G) is a bijection f : V (G) → {1, 2, ..., |V (G)|} such that an edge uv assigned the label 1 if 2 divides f(u)+f(v) and 0 otherwise. Further the number of edges labeled with 0 and the the number of edges labeled with 1 differ by atmost 1. A graph with sum divisor cordial labeling is called a sum divisor cordial graph. In this paper we prove that the graphs P n + P n (n is odd), P n @K 1,m , Cn@K 1,m (n is odd), W n * K 1,m (n is even), < K₁¹ ,n,n ∆K₁²2 ,n,n >, < Fl n ¹∆Fl n ² > are sum divisor cordial graphs. |
author |
Sugumaran,A. Rajesh,K. |
author_facet |
Sugumaran,A. Rajesh,K. |
author_sort |
Sugumaran,A. |
title |
Extended results on sum divisor cordial labeling |
title_short |
Extended results on sum divisor cordial labeling |
title_full |
Extended results on sum divisor cordial labeling |
title_fullStr |
Extended results on sum divisor cordial labeling |
title_full_unstemmed |
Extended results on sum divisor cordial labeling |
title_sort |
extended results on sum divisor cordial labeling |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400653 |
work_keys_str_mv |
AT sugumarana extendedresultsonsumdivisorcordiallabeling AT rajeshk extendedresultsonsumdivisorcordiallabeling |
_version_ |
1718439854643085312 |