Nonlinear elliptic problems in weighted variable exponent Sobolev spaces by topological degree
Abstract In this paper, we prove the existence of solutions for the nonlinear p(·)-degenerate problems involving nonlinear operators of the form − div a(x, ∇u) = f(x, u, ∇u) where a and f are Carathéodory functions satisfying some nonstandard growth conditions.
Guardado en:
Autores principales: | Ait Hammou,Mustapha, Azroul,El Houssine |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400733 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Orlicz-Sobolev inequalities and the Dirichlet problem for infinitely degenerate elliptic operators
por: Usman Hafeez, et al.
Publicado: (2021) -
Infinitely many solutions for anisotropic elliptic equations with variable exponent
por: El Amrouss,Abdelrachid, et al.
Publicado: (2021) -
Existence of renormalized solutions for some quasilinear elliptic Neumann problems
por: Benboubker Mohamed Badr, et al.
Publicado: (2021) -
Well-Posedness Results for Anisotropic Nonlinear Elliptic Equations with Variable Exponent and L¹-Data
por: Ouaro,Stanislas
Publicado: (2010) -
Nonlinear elliptic equations in dimension two with potentials which can vanish at infinity
por: Santaria Leuyacc,Yony Raúl
Publicado: (2019)