On p-adic gamma function related to q-Daehee polynomials and numbers
Abstract In this paper, we investigate p-adic q-integral (q-Volkenborn integral) on Z p of p-adic gamma function via their Mahler expansions. We also derived two q-Volkenborn integrals of p-adic gamma function in terms of q-Daehee polynomials and numbers and q-Daehee polynomials and numbers of the s...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400799 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172019000400799 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720190004007992019-11-04On p-adic gamma function related to q-Daehee polynomials and numbersDuran,UğurAçikgöz,Mehmet p-adic numbers, p-adic gamma function p-adic Euler constant Mahler expansion q-Daehee polynomials Stirling numbers of the first kind. Abstract In this paper, we investigate p-adic q-integral (q-Volkenborn integral) on Z p of p-adic gamma function via their Mahler expansions. We also derived two q-Volkenborn integrals of p-adic gamma function in terms of q-Daehee polynomials and numbers and q-Daehee polynomials and numbers of the second kind. Moreover, we discover q-Volkenborn integral of the derivative of p-adic gamma function. We acquire the relationship between the p-adic gamma function and Stirling numbers of the first kind. We finally develop a novel and interesting representation for the p-adic Euler constant by means of the q-Daehee polynomials and numbers.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.4 20192019-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400799en10.22199/issn.0717-6279-2019-04-0052 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
p-adic numbers, p-adic gamma function p-adic Euler constant Mahler expansion q-Daehee polynomials Stirling numbers of the first kind. |
spellingShingle |
p-adic numbers, p-adic gamma function p-adic Euler constant Mahler expansion q-Daehee polynomials Stirling numbers of the first kind. Duran,Uğur Açikgöz,Mehmet On p-adic gamma function related to q-Daehee polynomials and numbers |
description |
Abstract In this paper, we investigate p-adic q-integral (q-Volkenborn integral) on Z p of p-adic gamma function via their Mahler expansions. We also derived two q-Volkenborn integrals of p-adic gamma function in terms of q-Daehee polynomials and numbers and q-Daehee polynomials and numbers of the second kind. Moreover, we discover q-Volkenborn integral of the derivative of p-adic gamma function. We acquire the relationship between the p-adic gamma function and Stirling numbers of the first kind. We finally develop a novel and interesting representation for the p-adic Euler constant by means of the q-Daehee polynomials and numbers. |
author |
Duran,Uğur Açikgöz,Mehmet |
author_facet |
Duran,Uğur Açikgöz,Mehmet |
author_sort |
Duran,Uğur |
title |
On p-adic gamma function related to q-Daehee polynomials and numbers |
title_short |
On p-adic gamma function related to q-Daehee polynomials and numbers |
title_full |
On p-adic gamma function related to q-Daehee polynomials and numbers |
title_fullStr |
On p-adic gamma function related to q-Daehee polynomials and numbers |
title_full_unstemmed |
On p-adic gamma function related to q-Daehee polynomials and numbers |
title_sort |
on p-adic gamma function related to q-daehee polynomials and numbers |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400799 |
work_keys_str_mv |
AT duranu287ur onpadicgammafunctionrelatedtoqdaeheepolynomialsandnumbers AT acikgozmehmet onpadicgammafunctionrelatedtoqdaeheepolynomialsandnumbers |
_version_ |
1718439857426006016 |