On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices
Abstract We present a new construction of a symmetric arrow matrix from a particular spectral information: let λ(n) 1 be the minimal eigenvalue of the matrix and λj (j) , j = 1, 2, . . . , n the maximal eigenvalues of all leading principal submatrices of the matrix. We use such a p...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400811 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172019000400811 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720190004008112019-11-04On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matricesPickmann-Soto,H.Arela Pérez,SusanaEgaña,J.Carrasco Olivera,D. Arrow matrices Symmetric and nonsymmetric matrix Inverse eigenvalue problem. Abstract We present a new construction of a symmetric arrow matrix from a particular spectral information: let λ(n) 1 be the minimal eigenvalue of the matrix and λj (j) , j = 1, 2, . . . , n the maximal eigenvalues of all leading principal submatrices of the matrix. We use such a procedure to construct a nonsymmetric arrow matrix from the same spectral information plus to an eigenvector x(n) = (x1, x2, . . . , xn), so that (x(n), λn (n)) is an eigenpair of the matrix. Moreover, our results generate an algorithmic procedure to compute a solution matrix.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.4 20192019-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400811en10.22199/issn.0717-6279-2019-04-0053 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Arrow matrices Symmetric and nonsymmetric matrix Inverse eigenvalue problem. |
spellingShingle |
Arrow matrices Symmetric and nonsymmetric matrix Inverse eigenvalue problem. Pickmann-Soto,H. Arela Pérez,Susana Egaña,J. Carrasco Olivera,D. On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices |
description |
Abstract We present a new construction of a symmetric arrow matrix from a particular spectral information: let λ(n) 1 be the minimal eigenvalue of the matrix and λj (j) , j = 1, 2, . . . , n the maximal eigenvalues of all leading principal submatrices of the matrix. We use such a procedure to construct a nonsymmetric arrow matrix from the same spectral information plus to an eigenvector x(n) = (x1, x2, . . . , xn), so that (x(n), λn (n)) is an eigenpair of the matrix. Moreover, our results generate an algorithmic procedure to compute a solution matrix. |
author |
Pickmann-Soto,H. Arela Pérez,Susana Egaña,J. Carrasco Olivera,D. |
author_facet |
Pickmann-Soto,H. Arela Pérez,Susana Egaña,J. Carrasco Olivera,D. |
author_sort |
Pickmann-Soto,H. |
title |
On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices |
title_short |
On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices |
title_full |
On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices |
title_fullStr |
On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices |
title_full_unstemmed |
On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices |
title_sort |
on the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400811 |
work_keys_str_mv |
AT pickmannsotoh ontheinverseeigenproblemforsymmetricandnonsymmetricarrowheadmatrices AT arelaperezsusana ontheinverseeigenproblemforsymmetricandnonsymmetricarrowheadmatrices AT eganaj ontheinverseeigenproblemforsymmetricandnonsymmetricarrowheadmatrices AT carrascooliverad ontheinverseeigenproblemforsymmetricandnonsymmetricarrowheadmatrices |
_version_ |
1718439857656692736 |