On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices

Abstract We present a new construction of a symmetric arrow matrix from a particular spectral information: let λ(n) 1 be the minimal eigenvalue of the matrix and λj (j) , j = 1, 2, . . . , n the maximal eigenvalues of all leading principal submatrices of the matrix. We use such a p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pickmann-Soto,H., Arela Pérez,Susana, Egaña,J., Carrasco Olivera,D.
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400811
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172019000400811
record_format dspace
spelling oai:scielo:S0716-091720190004008112019-11-04On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matricesPickmann-Soto,H.Arela Pérez,SusanaEgaña,J.Carrasco Olivera,D. Arrow matrices Symmetric and nonsymmetric matrix Inverse eigenvalue problem. Abstract We present a new construction of a symmetric arrow matrix from a particular spectral information: let λ(n) 1 be the minimal eigenvalue of the matrix and λj (j) , j = 1, 2, . . . , n the maximal eigenvalues of all leading principal submatrices of the matrix. We use such a procedure to construct a nonsymmetric arrow matrix from the same spectral information plus to an eigenvector x(n) = (x1, x2, . . . , xn), so that (x(n), λn (n)) is an eigenpair of the matrix. Moreover, our results generate an algorithmic procedure to compute a solution matrix.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.4 20192019-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400811en10.22199/issn.0717-6279-2019-04-0053
institution Scielo Chile
collection Scielo Chile
language English
topic Arrow matrices
Symmetric and nonsymmetric matrix
Inverse eigenvalue problem.
spellingShingle Arrow matrices
Symmetric and nonsymmetric matrix
Inverse eigenvalue problem.
Pickmann-Soto,H.
Arela Pérez,Susana
Egaña,J.
Carrasco Olivera,D.
On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices
description Abstract We present a new construction of a symmetric arrow matrix from a particular spectral information: let λ(n) 1 be the minimal eigenvalue of the matrix and λj (j) , j = 1, 2, . . . , n the maximal eigenvalues of all leading principal submatrices of the matrix. We use such a procedure to construct a nonsymmetric arrow matrix from the same spectral information plus to an eigenvector x(n) = (x1, x2, . . . , xn), so that (x(n), λn (n)) is an eigenpair of the matrix. Moreover, our results generate an algorithmic procedure to compute a solution matrix.
author Pickmann-Soto,H.
Arela Pérez,Susana
Egaña,J.
Carrasco Olivera,D.
author_facet Pickmann-Soto,H.
Arela Pérez,Susana
Egaña,J.
Carrasco Olivera,D.
author_sort Pickmann-Soto,H.
title On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices
title_short On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices
title_full On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices
title_fullStr On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices
title_full_unstemmed On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices
title_sort on the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000400811
work_keys_str_mv AT pickmannsotoh ontheinverseeigenproblemforsymmetricandnonsymmetricarrowheadmatrices
AT arelaperezsusana ontheinverseeigenproblemforsymmetricandnonsymmetricarrowheadmatrices
AT eganaj ontheinverseeigenproblemforsymmetricandnonsymmetricarrowheadmatrices
AT carrascooliverad ontheinverseeigenproblemforsymmetricandnonsymmetricarrowheadmatrices
_version_ 1718439857656692736