Left and right generalized Drazin invertible operators and local spectral theory

Abstract In this paper, we give some characterizations of the left and right generalized Drazin invertible bounded operators in Banach spaces by means of the single-valued extension property (SVEP). In particular, we show that a bounded operator is left (resp. right) generalized Drazin invertible if...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Benharrat,Mohammed, Hocine,Kouider Miloud, Messirdi,Bekkai
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000500897
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172019000500897
record_format dspace
spelling oai:scielo:S0716-091720190005008972020-01-07Left and right generalized Drazin invertible operators and local spectral theoryBenharrat,MohammedHocine,Kouider MiloudMessirdi,Bekkai Left and right generalized Drazin invertible operators Generalized Drazin invertible operators SVEP Local spectral theory. Abstract In this paper, we give some characterizations of the left and right generalized Drazin invertible bounded operators in Banach spaces by means of the single-valued extension property (SVEP). In particular, we show that a bounded operator is left (resp. right) generalized Drazin invertible if and only if admits a generalized Kato decomposition and has the SVEP at 0 (resp. it admits a generalized Kato decomposition and its adjoint has the SVEP at 0. In addition, we prove that both of the left and the right generalized Drazin operators are invariant under additive commuting finite rank perturbations. Furthermore, we investigate the transmission of some local spectral properties from a bounded linear operator, as the SVEP, Dunford property (C), and property (β), to its generalized Drazin inverse.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.5 20192019-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000500897en10.22199/issn.0717-6279-2019-05-0058
institution Scielo Chile
collection Scielo Chile
language English
topic Left and right generalized Drazin invertible operators
Generalized Drazin invertible operators
SVEP
Local spectral theory.
spellingShingle Left and right generalized Drazin invertible operators
Generalized Drazin invertible operators
SVEP
Local spectral theory.
Benharrat,Mohammed
Hocine,Kouider Miloud
Messirdi,Bekkai
Left and right generalized Drazin invertible operators and local spectral theory
description Abstract In this paper, we give some characterizations of the left and right generalized Drazin invertible bounded operators in Banach spaces by means of the single-valued extension property (SVEP). In particular, we show that a bounded operator is left (resp. right) generalized Drazin invertible if and only if admits a generalized Kato decomposition and has the SVEP at 0 (resp. it admits a generalized Kato decomposition and its adjoint has the SVEP at 0. In addition, we prove that both of the left and the right generalized Drazin operators are invariant under additive commuting finite rank perturbations. Furthermore, we investigate the transmission of some local spectral properties from a bounded linear operator, as the SVEP, Dunford property (C), and property (β), to its generalized Drazin inverse.
author Benharrat,Mohammed
Hocine,Kouider Miloud
Messirdi,Bekkai
author_facet Benharrat,Mohammed
Hocine,Kouider Miloud
Messirdi,Bekkai
author_sort Benharrat,Mohammed
title Left and right generalized Drazin invertible operators and local spectral theory
title_short Left and right generalized Drazin invertible operators and local spectral theory
title_full Left and right generalized Drazin invertible operators and local spectral theory
title_fullStr Left and right generalized Drazin invertible operators and local spectral theory
title_full_unstemmed Left and right generalized Drazin invertible operators and local spectral theory
title_sort left and right generalized drazin invertible operators and local spectral theory
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000500897
work_keys_str_mv AT benharratmohammed leftandrightgeneralizeddrazininvertibleoperatorsandlocalspectraltheory
AT hocinekouidermiloud leftandrightgeneralizeddrazininvertibleoperatorsandlocalspectraltheory
AT messirdibekkai leftandrightgeneralizeddrazininvertibleoperatorsandlocalspectraltheory
_version_ 1718439858991529984