Left and right generalized Drazin invertible operators and local spectral theory
Abstract In this paper, we give some characterizations of the left and right generalized Drazin invertible bounded operators in Banach spaces by means of the single-valued extension property (SVEP). In particular, we show that a bounded operator is left (resp. right) generalized Drazin invertible if...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000500897 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172019000500897 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720190005008972020-01-07Left and right generalized Drazin invertible operators and local spectral theoryBenharrat,MohammedHocine,Kouider MiloudMessirdi,Bekkai Left and right generalized Drazin invertible operators Generalized Drazin invertible operators SVEP Local spectral theory. Abstract In this paper, we give some characterizations of the left and right generalized Drazin invertible bounded operators in Banach spaces by means of the single-valued extension property (SVEP). In particular, we show that a bounded operator is left (resp. right) generalized Drazin invertible if and only if admits a generalized Kato decomposition and has the SVEP at 0 (resp. it admits a generalized Kato decomposition and its adjoint has the SVEP at 0. In addition, we prove that both of the left and the right generalized Drazin operators are invariant under additive commuting finite rank perturbations. Furthermore, we investigate the transmission of some local spectral properties from a bounded linear operator, as the SVEP, Dunford property (C), and property (β), to its generalized Drazin inverse.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.5 20192019-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000500897en10.22199/issn.0717-6279-2019-05-0058 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Left and right generalized Drazin invertible operators Generalized Drazin invertible operators SVEP Local spectral theory. |
spellingShingle |
Left and right generalized Drazin invertible operators Generalized Drazin invertible operators SVEP Local spectral theory. Benharrat,Mohammed Hocine,Kouider Miloud Messirdi,Bekkai Left and right generalized Drazin invertible operators and local spectral theory |
description |
Abstract In this paper, we give some characterizations of the left and right generalized Drazin invertible bounded operators in Banach spaces by means of the single-valued extension property (SVEP). In particular, we show that a bounded operator is left (resp. right) generalized Drazin invertible if and only if admits a generalized Kato decomposition and has the SVEP at 0 (resp. it admits a generalized Kato decomposition and its adjoint has the SVEP at 0. In addition, we prove that both of the left and the right generalized Drazin operators are invariant under additive commuting finite rank perturbations. Furthermore, we investigate the transmission of some local spectral properties from a bounded linear operator, as the SVEP, Dunford property (C), and property (β), to its generalized Drazin inverse. |
author |
Benharrat,Mohammed Hocine,Kouider Miloud Messirdi,Bekkai |
author_facet |
Benharrat,Mohammed Hocine,Kouider Miloud Messirdi,Bekkai |
author_sort |
Benharrat,Mohammed |
title |
Left and right generalized Drazin invertible operators and local spectral theory |
title_short |
Left and right generalized Drazin invertible operators and local spectral theory |
title_full |
Left and right generalized Drazin invertible operators and local spectral theory |
title_fullStr |
Left and right generalized Drazin invertible operators and local spectral theory |
title_full_unstemmed |
Left and right generalized Drazin invertible operators and local spectral theory |
title_sort |
left and right generalized drazin invertible operators and local spectral theory |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000500897 |
work_keys_str_mv |
AT benharratmohammed leftandrightgeneralizeddrazininvertibleoperatorsandlocalspectraltheory AT hocinekouidermiloud leftandrightgeneralizeddrazininvertibleoperatorsandlocalspectraltheory AT messirdibekkai leftandrightgeneralizeddrazininvertibleoperatorsandlocalspectraltheory |
_version_ |
1718439858991529984 |