On a class of a Boundary value problems involving the p(x)-Biharmonic operator
Abstract Our aim is to establish the existence of weak solution for a class of Robin problems involving fourth order operator. The nonlinearity is superlinear but does not satisfy the usual Ambrosetti-Rabinowitz condition. The proof is made with and without variational structure.
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000500955 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172019000500955 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720190005009552020-01-07On a class of a Boundary value problems involving the p(x)-Biharmonic operatorOurraoui,A. p(x)-biharmonic Topological degree Variational methods Abstract Our aim is to establish the existence of weak solution for a class of Robin problems involving fourth order operator. The nonlinearity is superlinear but does not satisfy the usual Ambrosetti-Rabinowitz condition. The proof is made with and without variational structure.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.38 n.5 20192019-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000500955en10.22199/issn.0717-6279-2019-05-0061 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
p(x)-biharmonic Topological degree Variational methods |
spellingShingle |
p(x)-biharmonic Topological degree Variational methods Ourraoui,A. On a class of a Boundary value problems involving the p(x)-Biharmonic operator |
description |
Abstract Our aim is to establish the existence of weak solution for a class of Robin problems involving fourth order operator. The nonlinearity is superlinear but does not satisfy the usual Ambrosetti-Rabinowitz condition. The proof is made with and without variational structure. |
author |
Ourraoui,A. |
author_facet |
Ourraoui,A. |
author_sort |
Ourraoui,A. |
title |
On a class of a Boundary value problems involving the p(x)-Biharmonic operator |
title_short |
On a class of a Boundary value problems involving the p(x)-Biharmonic operator |
title_full |
On a class of a Boundary value problems involving the p(x)-Biharmonic operator |
title_fullStr |
On a class of a Boundary value problems involving the p(x)-Biharmonic operator |
title_full_unstemmed |
On a class of a Boundary value problems involving the p(x)-Biharmonic operator |
title_sort |
on a class of a boundary value problems involving the p(x)-biharmonic operator |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172019000500955 |
work_keys_str_mv |
AT ourraouia onaclassofaboundaryvalueproblemsinvolvingthepxbiharmonicoperator |
_version_ |
1718439859611238400 |